Note: This content is accessible to all versions of every browser. However, this browser does not seem to support current Web standards, preventing the display of our site's design details.

  

401-3901-00L
Mathematical Optimization

Professor(en):
R. Weismantel
Betreuer:
Vorlesung:
Link zum Kurskatalog
Fall 2017
Webseite:
Ziele:
Advanced optimization theory and algorithms.
Vorlesungslevel:
D-ITET Master, Systems and Control specialization
Supplementary Core Courses
Voraussetzungen:
Inhalt:
1. Linear optimization: The geometry of linear programming, the simplex method for solving linear programming problems, Farkas' Lemma and infeasibility certificates, duality theory of linear programming. 2. Nonlinear optimization: Lagrange relaxation techniques, Newton method and gradient schemes for convex optimization. 3. Integer optimization: Ties between linear and integer optimization, total unimodularity, complexity theory, cutting plane theory. 4. Combinatorial optimization: Network flow problems, structural results and algorithms for matroids, matchings and, more generally, independence systems. http://www.vvz.ethz.ch/Vorlesungsverzeichnis/lerneinheitPre.do?lerneinheitId=61317&semkez=2009W&lang=de
Dokumentation: