Note: This content is accessible to all versions of every browser. However, this browser does not seem to support current Web standards, preventing the display of our site's design details.


Uncovering Droop Control Laws Embedded Within the Nonlinear Dynamics of Van der Pol Oscillators


M. Sinha, F. Dörfler, B. Johnson, S. Dhople


This paper examines the dynamics of powerelectronic inverters in islanded microgrids that are controlled to emulate the dynamics of Van der Pol oscillators. The general strategy of controlling inverters to emulate the behavior of nonlinear oscillators presents a compelling time-domain alternative to ubiquitous droop control methods which presume the existence of a quasi-stationary sinusoidal steady state and operate on phasor quantities. We present two main results in this work. First, by leveraging the method of periodic averaging, we demonstrate that droop laws are intrinsically embedded within a slower time scale in the nonlinear dynamics of Van der Pol oscillators. Second, we establish the global convergence of amplitude and phase dynamics in a resistive network interconnecting inverters controlled as Van der Pol oscillators. Furthermore, under a set of non-restrictive decoupling approximations, we derive sufficient conditions for local exponential stability of desirable equilibria of the linearized amplitude and phase dynamics


Type of Publication:


File Download:

Request a copy of this publication.
(Uses JavaScript)
% Autogenerated BibTeX entry
@Misc { SinEtal:2014:IFA_5054,
    author={M. Sinha and F. D{\"o}rfler and B. Johnson and S. Dhople},
    title={{Uncovering Droop Control Laws Embedded Within the Nonlinear
	  Dynamics of Van der Pol Oscillators}},
Permanent link