Elementary Proofs of Some Classical Stability Criteria

HERVÉ CHAPELLAT, MOHAMED MANSOUR, FELLOW, IEEE, AND SHANKAR P. BHATTACHARYYA, FELLOW, IEEE

Abstract—Classical stability results and tests on the stability of a given polynomial are proved and derived here using a simple continuity property. The resulting new proofs given of the Hermite-Bieler theorem and the Routh and Jury tests are elementary and insightful. Most important, the proofs given here would allow the instructor to present these fundamental topics of control theory, for the first time, in an elementary, rational, and meaningful way rather than as mere sets of rules and formulae.

I. INTRODUCTION

IN THIS PAPER, we present a unified and elementary approach to the classical problem of determining the stability of a polynomial from its coefficients. The approach consists of a systematic use of the following fact: Given a parametrized family of polynomials and any continuous path in this parameter space leading from a stable to an unstable polynomial, then, the first unstable point that is encountered in traversing this path corresponds to a polynomial whose unstable roots lie on the boundary (and not in the interior) of the instability region in the complex plane.

The above result, which we call the boundary crossing theorem, is established rigorously in the next section. The proof follows simply from the continuity of the roots of a polynomial with respect to its coefficients. The consequences of this result, however, are quite far reaching, and we demonstrate this in the subsequent sections by using it to give simple derivations of the classical Hermite-Bieler theorem, the Routh test for left half plane stability, and the Jury test for unit circle stability.

The contribution of this paper relative to the existing literature is that our, simple proofs of these fundamental results make them accessible even to undergraduates, whereas the existing proofs in the literature certainly do not.

II. THE BOUNDARY CROSSING THEOREM

We first introduce two well-known results that will lead us to the main theorem.

Theorem 2.1 (Rouché's Theorem): Let \(f(z) \) and \(g(z) \) be two functions that are analytic inside and on a simple closed contour \(C \). If \(|g(z)| < |f(z)| \) for all \(z \) on \(C \), \(f(z) \) and \(f(z) + g(z) \) have the same number of zeros (multiplicities included) inside \(C \).

This is just one formulation of Rouché's theorem, but it is sufficient for our purposes. Let us now state and prove a second important result [1].

Theorem 2.2: Let

\[
P(s) = p_0 + p_1 s + \cdots + p_n s^n = p_n \prod_{j=1}^{m} (s - s_j)^{k_j},
\]

\(p_n \neq 0 \)

\[
Q(s) = (p_0 + \epsilon_0) + (p_1 + \epsilon_1)s + \cdots + (p_n + \epsilon_n)s^n
\]

and consider a circle \(C_k \) of radius \(r_k \) centered at \(s_k \) which is a root of \(P(s) \) of multiplicity \(t_k \). Let \(r_k \) be fixed but satisfy

\[
0 \leq r_k < \min |s_k - s_j|,
\]

for \(j = 1, 2, \ldots, k - 1, k + 1, \ldots, m \).

Then, there exists a positive number \(\epsilon \), such that if \(|\epsilon_i| \leq \epsilon \), for \(i = 0, 1, \ldots, n \), \(Q(s) \) has precisely \(t_k \) zeros in the circle \(C_k \).

Proof: \(P(s) \) is nonzero and continuous on the compact set \(C_k \), and therefore, it is possible to find \(\delta_k > 0 \) such that

\[
|P(s)| \geq \delta_k > 0, \quad \forall s \in C_k.
\]

On the other hand, consider the polynomial \(R(s) \) defined by

\[
R(s) = \epsilon_0 + \epsilon_1 s + \cdots + \epsilon_n s^n.
\]

On the circle \(C_k \), we have

\[
|R(s)| \leq \sum_{j=0}^{n} |\epsilon_j||s|^j \leq \sum_{j=0}^{n} |\epsilon_j|(|s - s_k| + |s_k|)^j
\]

\[
\leq \epsilon \sum_{j=0}^{n} (r_k + |s_k|)^j
\]

Thus, if \(\epsilon \) is chosen so that \(\epsilon < \delta_k/M_k \), we can conclude that

\[
|R(s)| < |P(s)|, \quad \text{for all} \quad s \text{ on} \quad C_k
\]

so that by Rouché's theorem, \(Q(s) \) and \(P(s) \) have the same number of zeros inside \(C_k \). Since the choice of \(r_k \) ensures that \(P(s) \) has just one zero of multiplicity \(t_k \) at \(s_k \), we see that \(Q(s) \) has precisely \(t_k \) zeros in \(C_k \).
Corollary 2.2: Fix m circles \(C_1, \ldots, C_m \), that are pairwise disjoint and centered at \(s_1, s_2, \ldots, s_m \), respectively. Then, it is always possible to find, by repeatedly applying the previous theorem, an \(E \) with \(m \) zeros inside each of the circles \(C_i \). Note that in this case, \(Q(s) \) always has \(t_1 + t_2 + \cdots + t_m = n \) zeros and must therefore remain of degree \(n \) so that necessarily \(\epsilon < |p_n| \).

The above theorem and its corollary lead to the following main result.

A. Main Theorem

Let us consider the complex plane \(C \), and let \(S \) be any given open set. We know that \(S \), which is its boundary \(\partial S \) together with the interior \(U^0 \) of the closed set \(U = C - S \), form a partition of the complex plane, that is

\[
S \cup \partial S \cup U^0 = C, \\
S \cap U^0 = S \cap \partial S = \partial S \cap U^0 = \emptyset.
\]

We assume, moreover, that these three sets are all non-empty. These assumptions are very general. In stability theory, we might choose for \(\partial S \) the open unit disk \(D^1 \) (for discrete time systems) or suitable subsets of these, respectively.

Now, let \(P(\lambda, s) \) be a family of polynomials of fixed degree \(n \), which is continuous with respect to \(\lambda \) on a fixed interval \(t = [a, b] \). In other words, \(P(\lambda, s) \) can be written as

\[
P(\lambda, s) = p_0(\lambda) + p_1(\lambda)s + \cdots + p_n(\lambda)s^n
\]

where \(p_0(\lambda), p_1(\lambda), \ldots, p_n(\lambda) \) are continuous functions of \(\lambda \) on \(I \) and where \(p_n(\lambda) \neq 0 \) for all \(\lambda \in I \). From the results of Theorem 2.2 and its corollary, it is immediate that in general, for any open set \(O \), the set of polynomials of degree \(n \) that have all their roots in \(O \) is itself open. In the case that we consider above, we thus conclude that if for some \(t \in I \), \(P(t, s) \) has all its roots in \(S \). It is then always possible to find a positive \(\alpha \) such that

\[
\forall t' \in (t - \alpha, t + \alpha) \cap I, P(t', s)
\]

also has all its roots in \(S \). This leads to the following fundamental result.

Theorem 2.3 (Boundary Crossing Theorem): Suppose that \(P(a, s) \) has all its roots in \(S \), where \(P(b, s) \) has at least one root in \(U \). Then, there exists at least one \(\rho \) in \((a, b) \) such that

a) \(P(\rho, s) \) has all its roots in \(S \cup \partial S \).

b) \(P(\rho, s) \) has at least one root in \(\partial S \).

Proof: To prove this result, let us introduce the set \(E \) of all real numbers \(t \) belonging to \((a, b) \) and satisfying the following property:

\[
\emptyset: \forall t' \in (a, t), P(t', s) \text{ has all its roots in } S.
\]

By assumption, we know that \(P(a, s) \) itself has all its roots in \(S \), and therefore, as we saw already, it is possible to find \(\alpha > 0 \) such that

\[
\forall t' \in [a, a + \alpha) \cap I, P(t', s)
\]

also has all its roots in \(S \). From this, we conclude that \(E \) is not empty since, for example, \(a + \alpha/2 \) belongs to \(E \). Moreover, from the definition of \(E \), it is obvious that we have the following property:

\[
t_2 \in E, \text{ and } a < t_1 < t_2
\]

imply that \(t_1 \) itself belongs to \(E \). Given this, it is easy to see that \(E \) is an interval, and if we define

\[
\rho = \sup \{t \in E \}
\]

then we have that

\[
E = (a, \rho].
\]

A) On the one hand, it is impossible that \(P(\rho, s) \) has all its roots in \(S \). If this were the case, then necessarily, \(\rho < b \), and it would be possible to find an \(\alpha > 0 \) such that \(\rho + \alpha < b \) and

\[
\forall t' \in (\rho - \alpha, \rho + \alpha) \cap I, P(t', s)
\]

also has all its roots in \(S \). As a result, \(\rho + \alpha/2 \) would belong to \(E \), contradicting the definition of \(\rho \) in (1).

B) On the other hand, it is also impossible that \(P(\rho, s) \) has even one root in the interior of \(U \) because a straightforward application of Theorem 2.1 would grant the possibility of finding an \(\alpha > 0 \) such that

\[
\forall t' \in (\rho - \alpha, \rho + \alpha) \cap I, P(t', s)
\]

has at least one root in the interior of \(U \), and this would contradict the fact that \(\rho - \epsilon \) belongs to \(E \) for \(\epsilon \) small enough. From A) and B), we thus conclude that \(P(\rho, s) \) has all its roots in \(S \cup \partial S \) and at least one root in \(\partial S \).

The above result is interesting but also very intuitive and just states that in going from one open set to another open set disjoint from the first, the root set of a continuous family of polynomials \(P(\lambda, s) \) of fixed degree must intersect at some intermediate stage the frontier of the first open set. In the following sections, we will show the power of this simple result as we apply it to some classical stability problems.

III. The Hermite-Biehler Theorem

The first result presented below is the interlacing theorem, which is sometimes referred to as the Hermite-Biehler theorem. We first introduce some general notation and definitions that will be used in the following.

Consider a polynomial of degree \(n \)

\[
P(s) = p_0 + p_1 s + p_2 s^2 + \cdots + p_n s^n.
\]

\(P(s) \) is said to be Hurwitz if and only if all its roots lie in the open left half of the complex plane. For a Hurwitz polynomial with real coefficients, we have the following two elementary properties:

Property 3.1: If a polynomial \(P(s) \) is Hurwitz, all its coefficients are nonzero and have the same sign, either all positive or all negative.
Proposition 3.2: If a polynomial \(P(s) \) is Hurwitz and of degree \(n \), the phase \(\arg (P(j\omega)) \) is a continuous and strictly increasing function of \(\omega \) on \((-\infty, +\infty) \). Moreover, the net increase in phase from \(-\infty \) to \(+\infty \) is
\[
\arg (P(+\infty)) - \arg (P(-\infty)) = n\pi. \tag{2}
\]
Proof: If \(P(s) \) is Hurwitz, we can write
\[
P(s) = p_n \prod_{i=1}^{n} (s - s_i), \text{ with } s_i = a_i + jb_i, \text{ and } a_i < 0.
\]
Then, we have
\[
\arg (P(j\omega)) = \arg (p_n) + \sum_{i=1}^{n} \arg (j\omega - a_i - jb_i) = \arg (p_n) + \sum_{i=1}^{n} \arctan \left(\frac{\omega - b_i}{-a_i} \right)
\]
and thus, \(\arg (P(j\omega)) \) is a sum of a constant plus \(n \) continuous, strictly increasing functions. Moreover, each of these \(n \) functions has a net increase of \(\pi \) in going from \(-\infty\) to \(+\infty\).

The even and odd parts of \(P(s) \) are defined as
\[
\begin{align*}
P^{\text{even}}(s) &= p_0 + p_2 s^2 + p_4 s^4 + \cdots, \\
P^{\text{odd}}(s) &= p_1 s + p_3 s^3 + p_5 s^5 + \cdots \tag{3}
\end{align*}
\]
We also define \(P^e(\omega) \) and \(P^o(\omega) \) as follows:
\[
\begin{align*}
P^e(\omega) &= P^{\text{even}}(j\omega) = p_0 - p_2 \omega^2 + p_4 \omega^4 - \cdots, \\
P^o(\omega) &= P^{\text{odd}}(j\omega) = p_1 - p_3 \omega^2 + p_5 \omega^4 - \cdots \tag{4}
\end{align*}
\]
\(P^e(\omega) \) and \(P^o(\omega) \) are both polynomials in \(\omega^2 \), and as an immediate consequence, their root sets will always be symmetric with respect to the origin of the complex plane. Suppose now that the degree of the polynomial \(P(s) \) is even, that is, \(n = 2m, m > 0 \). In that case, we have
\[
\begin{align*}
P^e(\omega) &= p_0 - p_2 \omega^2 + p_4 \omega^4 - \cdots + (-1)^m p_{2m} \omega^{2m}, \\
P^o(\omega) &= p_1 - p_3 \omega^2 + p_5 \omega^4 - \cdots + (-1)^{m-1} p_{2m-1} \omega^{2m-2}.
\end{align*}
\]
Definition 3.1: We say that \(P(s) \) satisfies the interlacing property if and only if
\begin{enumerate}
\item[a)] \(p_{2m} \) and \(p_{2m-1} \) have the same sign.
\item[b)] All the roots of \(P^e(\omega) \) and \(P^o(\omega) \) are real, and the \(m \) positive roots of \(P^e(\omega) \) together with the \(m \) positive roots of \(P^o(\omega) \) interlace in the following manner:
\[
0 < \omega_{e,1} < \omega_{o,1} < \cdots < \omega_{e,m} < \omega_{o,m}.
\]
\end{enumerate}
If, on the contrary, the degree of \(P(s) \) is odd, \(n = 2m + 1, m \geq 0 \), and
\[
P^e(\omega) = p_0 - p_2 \omega^2 + p_4 \omega^4 - \cdots + (-1)^m p_{2m} \omega^{2m}, \\
P^o(\omega) = p_1 - p_3 \omega^2 + p_5 \omega^4 - \cdots + (-1)^{m-1} p_{2m-1} \omega^{2m-2}
\]
and the definition of the interlacing property for this case is then naturally modified to
\begin{enumerate}
\item[a)] \(p_{2m+1} \) and \(p_{2m} \) have the same sign.
\item[b)] All the roots of \(P^e(\omega) \) and \(P^o(\omega) \) are real, and the \(m \) positive roots of \(P^e(\omega) \) together with the \(m \) positive roots of \(P^o(\omega) \) interlace in the following manner:
\[
0 < \omega_{e,1} < \omega_{o,1} < \cdots < \omega_{e,m} < \omega_{o,m}.
\]
\end{enumerate}
This last definition is illustrated in Fig. 1.

We can now enunciate and prove the following theorem:

Theorem 3.1 (Interlacing Theorem for Real Polynomials): A real polynomial \(P(s) \) is Hurwitz if and only if it satisfies the interlacing property.

Proof: To prove the necessity of the interlacing property, let us suppose that we start with a real Hurwitz polynomial of degree \(n \)
\[
P(s) = p_0 + p_1 s + p_2 s^2 + \cdots + p_n s^n.
\]
We already know from Property 3.1 that all the coefficients \(p_i \) have the same sign; thus part a) of the interlacing property is already proven, and we can assume without loss of generality that all the coefficients are positive. To prove part b), we will assume arbitrarily that \(P(s) \) is of even degree so that \(n = 2m \). Now, we also know from Proposition 3.2 that the phase of \(P(j\omega) \) strictly increases from \(-\pi/2\) to \(\pi/2\) as \(\omega \) runs from \(-\infty\) to \(+\infty\). Due to the fact that the roots of \(P(s) \) are symmetric with respect to the real axis, it is also true that \(\arg (P(j\omega)) \) increases from \(0 \) to \(+\pi/2 = m\pi \) as \(\omega \) goes from \(0 \) to \(+\infty \). Hence, as \(\omega \) goes from \(0 \) to \(+\infty \), \(P(j\omega) \) starts on the positive real axis \(P(0) = p_0 > 0 \), circles strictly counterclockwise around the origin \(m\pi \) radians before going to infinity, and never passes through the origin since \(P(j\omega) \neq 0 \) for all \(\omega \). As a result, it is very easy to see that the plot of \(P(j\omega) \) has to cut the imaginary axis \(m \) times so that the real part of \(P(j\omega) \) becomes zero \(m \) times as \(\omega \) increases, at the positive values
\[
\omega_{R,1}, \omega_{R,2}, \cdots, \omega_{R,m}.
\]
Similarly, the plot of \(P(j\omega) \) starts on the positive real axis and cuts the real axis another \(m - 1 \) times as \(\omega \) increases so that the imaginary part of \(P(j\omega) \) also becomes zero \(m \) times (including \(\omega = 0 \)) before growing to infinity at
\[
0, \omega_{I,1}, \omega_{I,2}, \cdots, \omega_{I,m-1}.
\]
Moreover, since \(P(j\omega) \) circles around the origin, we obviously have
Now, the proof of necessity is completed by simply noticing that the real part of \(P(j\omega) \) is nothing but \(P'(\omega) \), and the imaginary part of \(P(j\omega) \) is \(\omega P''(j\omega) \).

For the converse, assume that \(P(s) \) satisfies the interlacing property, and suppose for example that \(P(s) \) is of degree \(n = 2m \) and that \(p_{2m}, p_{2m-1} \) are both positive. Let us consider the roots of \(P'(\omega) \) and \(P''(\omega) \)

\[
0 < \omega_{r,1} < \omega_{r,1}^p < \cdots < \omega_{r,m-1} < \omega_{r,m-1}^p < \omega_{r,m},
\]

From this, we deduce that \(P'(\omega) \) and \(P''(\omega) \) can be written as

\[
P'(\omega) = p_{2m} \prod_{i=1}^{m} (\omega^2 - \omega_{r,i}^2)
\]

\[
P''(\omega) = p_{2m-1} \prod_{i=1}^{m-1} (\omega^2 - \omega_{r,i}^p)^2.
\]

Now, let us consider a polynomial \(Q(s) \) that is known to be stable, of the same degree \(2m \), and with all its coefficients positive. For example, we could take \(Q(s) = (s + 1)^{2m} \). In any event, write

\[
Q(s) = q_0 + q_1s + q_2s^2 + \cdots + q_{2m}s^{2m}.
\]

Since \(Q(s) \) is stable, we know from the first part of the theorem that \(Q(s) \) satisfies the interlacing theorem so that \(Q'(\omega) \) has \(m \) positive roots \(\omega_{r,1}^q, \cdots, \omega_{r,m}^q, Q''(\omega) \) has \(m-1 \) positive roots \(\omega_{o,1}^q, \cdots, \omega_{o,m-1}^q, \) and

\[
0 < \omega_{r,1}^q < \omega_{r,1}^o < \cdots < \omega_{r,m-1}^q < \omega_{r,m-1}^o < \omega_{r,m}^q < \omega_{o,m}^q
\]

(5)

Therefore, we can also write

\[
Q'(\omega) = q_{2m} \prod_{i=1}^{m} (\omega^2 - \omega_{r,i}^q)
\]

\[
Q''(\omega) = q_{2m-1} \prod_{i=1}^{m-1} (\omega^2 - \omega_{r,i}^o)^2.
\]

Consider now the polynomial \(P_\lambda(s) \) defined by

\[
P_\lambda^q(\omega) := ((1 - \lambda) q_{2m} + \lambda p_{2m})
\]

\[
\cdot \prod_{i=1}^{m} \left(\omega^2 - \left((1 - \lambda) \omega_{r,i}^q + \lambda \omega_{o,i}^q \right)^2 \right).
\]

Obviously, the coefficients of \(P_\lambda(s) \) are polynomial functions in \(\lambda \), which are therefore continuous on \([0, 1]\). Moreover, the coefficient of the highest degree term of \(P_\lambda(s) \) is \((1 - \lambda) q_{2m} + \lambda p_{2m} \) and always remains positive as \(\lambda \) varies from 0 to 1. For \(\lambda = 0 \), we have \(P_0(s) = Q(s) \) and for \(\lambda = 1 \), \(P_1(s) = P(s) \). Suppose now that \(P(s) \) is not Hurwitz. From the boundary crossing theorem, we then know that there necessarily exists some \(\lambda \) in \((0, 1]\) such that \(P_\lambda(s) \) has a root on the imaginary axis. However, \(P_\lambda(s) \) has a root on the imaginary axis if and only if \(P_\lambda^q(\omega) \) and \(P_\lambda^o(\omega) \) have a common root, but obviously, the roots of \(P_\lambda^q(\omega) \) satisfy

\[
\omega_{r,i}^o = \left((1 - \lambda) \omega_{r,i}^q + \lambda \omega_{o,i}^q \right)^2
\]

and those of \(P_\lambda^o(\omega) \) satisfy

\[
\omega_{o,i}^o = \left((1 - \lambda) \omega_{r,i}^q + \lambda \omega_{o,i}^q \right)^2.
\]

Now, take any two roots of \(P_\lambda^q(\omega) \) in (7). If \(i < j \), we know from (5) that \(\omega_{r,i}^o < \omega_{r,j}^o \), and similarly, from (6), \(\omega_{o,i}^o < \omega_{o,j}^o \) so that we also have

\[
\omega_{r,i}^o < \omega_{o,i}^o < \omega_{o,j}^o.
\]

In the same way, it can be seen that the same order as in (5) and (6) is preserved between the roots of \(P_\lambda^q(\omega) \) as well as between any root of \(P_\lambda^o(\omega) \) and any root of \(P_\lambda^o(\omega) \).

In other words, part b) of the interlacing property is invariant under such convex combinations so that we also have for every \(\lambda \) in \([0, 1]\):

\[
0 < \omega_{r,1}^o < \omega_{r,1}^q < \cdots < \omega_{r,m-1}^o < \omega_{r,m-1}^q < \omega_{r,m}^q < \omega_{o,m}^q < \omega_{o,m}^o
\]

(8)

However, this shows that whatever the value of \(\lambda \) in \([0, 1] \), \(P_\lambda^q(\omega) \) and \(P_\lambda^o(\omega) \) can never have a common root, and this therefore leads to a contradiction, which completes the proof.

Remark 1: The same kind of theorem holds for polynomials with complex coefficients:

\[
P(s) = (a_0 + j b_0) + (a_1 + j b_1)s + \cdots + (a_n + j b_n)s^n.
\]

As in the real case, one can show that the real and imaginary parts of \(P(j\omega) \) satisfy an interlacing theorem that is very similar to the one we defined earlier. However, these real and imaginary parts no longer correspond to the even and odd parts of \(P(s) \) but rather to the two polynomials

\[
P_\text{Re}(s) = a_0 + j b_0 s + a_2 s^2 + j b_2 s^3 + \cdots,
\]

\[
P_\text{Im}(s) = a_0 + j b_0 s + a_2 s^2 + j b_2 s^3 + \cdots.
\]

Remark 2: In fact, it is always possible to derive results similar to the interlacing theorem with respect to any sta-
bility region \(S \), which has the property that the phase of the polynomial evaluated along the boundary of \(S \) increases monotonically and undergoes a net change of \(n \pi \). In this case, the stability of the polynomial with respect to \(S \) is equivalent to the interlacing of its real and imaginary parts evaluated along the boundary of \(S \).

Consider, for example, the Schur or unit circle stability of a real polynomial

\[
P(z) = p_n z^n + p_{n-1} z^{n-1} + \cdots + p_1 z + p_0.
\]

It is important to prove that the stability of \(P(z) \) is equivalent to the interlacing of the real and imaginary parts evaluated along the boundary of \(S \) in the upper half of the unit circle.

More precisely, the two functions of \(\theta \)

\[
R(\theta) = p_n \cos(n \theta) + \cdots + p_1 \cos(\theta) + p_0
\]

and

\[
I(\theta) = p_n \sin(n \theta) + \cdots + p_1 \sin(\theta)
\]

must interlace on \([0, \pi] \).

This condition can in fact be further refined to the interlacing on the unit circle of the two polynomials

\[
P_1(z) = \frac{1}{2}(P(z) + z^n P(1/z))
\]

and

\[
P_2(z) = \frac{1}{2}(P(z) - z^n P(1/z)).
\]

In the next two sections, we use the results of Sections II and III to give elementary proofs of Jury’s (unit circle) and Routh’s (left half plane) stability tests.

IV. SCHUR STABILITY

The problem of checking the stability of a discrete time system reduces to the determination of whether or not the roots of the characteristic polynomial of the system lie strictly within the unit circle or not. In this section, we develop a simple test procedure for this problem based on the boundary crossing theorem. The procedure turns out to be equivalent to Jury’s test for unit circle stability.

First, we recall that a polynomial is said to be Schur if it has all its roots inside the unit circle. Now, let

\[
P(z) = p_n z^n + p_{n-1} z^{n-1} + \cdots + p_1 z + p_0
\]

be a polynomial of degree \(n \). We have the following necessary condition.

Property 4.1: A necessary condition for \(P(z) \) to be Schur is that

\[
|p_n| > |p_0|.
\]

In effect, if \(P(z) \) has all its roots \(z_1, \ldots, z_n \) inside the unit circle, the product of these roots is given by

\[
\prod_{i=1}^{n} z_i = \frac{p_0}{p_n}
\]
of $P_0(z)$. Then

$$P(z_0) - \lambda \frac{p_0}{p_n} z_0^2 P(1/z_0) = 0$$

and

$$P(1/z_0) - \lambda \frac{p_0}{p_n} (1/z_0)^n P(z_0) = 0$$

so that

$$P(z_0)(1 - \lambda^2 \frac{p_0}{p_n} z_0^2) = 0.$$

Again, this implies that $P(z_0) = 0$ as well as $P(1/z_0) = 0$; thus also, $R(z_0) = 0$, which again leads to a contradiction.

The above lemma leads to the following procedure for successively reducing the degree and testing for stability. Starting with a polynomial $P(z)$ that one wants to check for stability, one follows the following procedure:

1) Set $P^{(1)}(z) = P(z)$.

2) Verify $|p_{n}^{(1)}| > |p_{n}^{(2)}|$.

3) Construct $P^{(i+1)}(z) = 1/z(P^{(i)}(z) - p_{n}^{(i)} P^{(i)}(1/z))$.

4) Go back to 2) until you either find that 2) is violated ($P(z)$ is not Schur) or until you reach $P^{(n-1)}(z)$ (which is of degree 1) in which case condition 2) is also sufficient, and $P(z)$ is Schur.

It can be verified by the reader that this procedure leads precisely to the Jury stability test.

Example: Consider a polynomial of degree 3 in the variable z

$$P(z) = z^3 + az^2 + bz + c.$$

According to our algorithm, we form the following polynomial

$$P^{(1)}(z) = 1/z(P(z) - cz^2 P(1/z))$$

$$= (1 - c^2)z^2 + (a - bc)z + b - ac$$

and then

$$P^{(2)}(z) = 1/z \left(P^{(1)}(z) - \frac{(b - ac)}{1 - c^2} z^2 P^{(1)}(1/z) \right)$$

$$= \frac{(1 - c^2)^2 - (b - ac)^2}{1 - c^2} z$$

$$+ (a - bc) \left(1 - \frac{b - ac}{1 - c^2} \right).$$

On the other hand, the Jury's table is given by

<table>
<thead>
<tr>
<th>c</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>$c^2 - 1$</td>
<td>$ca - b$</td>
<td>$cb - a$</td>
</tr>
<tr>
<td>$ca - b$</td>
<td>$c^2 - 1$</td>
<td>$(c^2 - 1)^2 - (ca - b)^2 - (bc - a)((c^2 - 1) - (ca - b))$.</td>
</tr>
</tbody>
</table>
be the interlacing roots of $P'(\omega)$ and $P''(\omega)$. One can easily check by using (10) and the definitions (4) that $Q'(\omega)$ and $Q''(\omega)$ are given by

$$Q'(\omega) = P'(\omega) + \mu \omega^2 P''(\omega), \quad \mu = p_{2m}/p_{2m-1},$$

$$Q''(\omega) = P''(\omega).$$

From this, we already conclude that $Q'(\omega)$ has the required number of positive roots, namely, the m positive roots:

$$w_{o,1}, w_{o,2}, \ldots, w_{o,m-1}.$$

Moreover, due to the form of $Q'(\omega)$, we can deduce that

$$Q'(0) = P'(0) > 0,$$

$$Q'(w_{o,1}) = P'(w_{o,1}) < 0,$$

$$\vdots$$

$$Q'(w_{o,m-2}) = P'(w_{o,m-2}),$$

has the sign of $(-1)^{m-2}$,

$$Q'(w_{o,m-1}) = P'(w_{o,m-1}),$$

has the sign of $(-1)^{m-1}$.

Hence, we can already conclude that $Q'(\omega)$ has $m - 1$ positive roots $\omega_{o,1}, \omega_{o,2}, \ldots, \omega_{o,m-1}$, which interlace with the roots of $Q'(\omega)$. Since $Q'(\omega)$ is of degree $m - 1$ in ω^2, these are the only positive roots it can have. Moreover, we have seen that the sign of $Q'(\omega)$ at the last root $\omega_{o,m-1}$ of $Q'(\omega)$ is that of $(-1)^{m-1}$, but the highest coefficient of $Q'(\omega)$ is nothing but

$$q_{2m-2}(-1)^{m-1}.$$

From this, we see that q_{2m-2} must be strictly positive, as is $q_{2m-1} = p_{2m-1}$; otherwise, $Q'(\omega)$ would again have a change of sign between $\omega_{o,m-1}$ and $+\infty$, which would result in the contradiction of $Q'(\omega)$ having m positive roots (whereas it is a polynomial of degree only $m - 1$ in ω^2). Therefore, $Q'(\omega)$ satisfies the interlacing property and is stable if $P(s)$ is stable as well.

b) Conversely, assuming that $Q(s)$ is stable, we can write that

$$P(s) = (Q^{\text{even}}(s) + \mu s Q^{\text{odd}}(s)) + Q^{\text{odd}}(s).$$

By the same reasoning as in a), we can see that $P'(\omega)$ already has the required number $m - 1$ of positive roots and that $P''(\omega)$ already has $m - 1$ roots in the interval $0, w_{o,m-1})$ that interlace with the roots of $P''(\omega)$. Moreover, the sign of $P'(\omega)$ at $\omega_{o,m-1}$ is the same as $(-1)^{m-1}$, whereas by adding the term $p_{2m}s^{2m}$ to $P'(s)$, the sign of $P'(\omega)$ at $+\infty$ is that of $(-1)^m$. Thus, $P'(\omega)$ has an mth positive root:

$$\omega_{o,m} > \omega_{o,m-1}.$$

Thus, $P(s)$ satisfies the interlacing property and is therefore stable.

The above lemma shows how the stability of a polynomial $P(s)$ can be checked by successively reducing its degree as follows:

1) Set $P^{(0)}(s) = P(s)$.

2) Verify that all the coefficients of $P^{(1)}(s)$ are positive.

3) Construct $P^{(i+1)}(s)$ according to (11).

4) Go back to 2) until you either find that any 2) is violated ($P(s)$ is not Hurwitz) or until you reach $P^{(n-2)}(s)$ (which is of degree 2) in which case condition 2) is also sufficient ($P(s)$ is Hurwitz).

The reader may verify that this procedure is identical to Routh's test since it generates the Routh's table. However, our procedure does not allow us to count the stable and unstable zeros of the polynomial as can be done with Routh's theorem.

Example: Consider a polynomial of degree 4

$$P(s) = s^4 + as^3 + bs^2 + cs + d.$$

Following the algorithm above, we form the polynomials

$$\mu = \frac{a^2}{ab - c}$$

and

$$P^{(1)}(s) = as^3 + (b - c/a)s^2 + cs + d$$

and then

$$P^{(2)} = (b - c/a)s^3 + \left(c - \frac{a^2d}{ab - c}\right)s + d.$$

Considering that at each step, only the even or the odd part of the polynomial is modified, we have to verify the positiveness of the following set of coefficients:

$$1 \quad b \quad d$$

$$a \quad c$$

$$b - c/a \quad d$$

$$c - \frac{a^2d}{ab - c}$$

However, this is just the Routh table for this polynomial. Our proof also shows the following well-known property: All the numbers that appear in the Routh table of a Hurwitz polynomial are positive (and not only the first column).

VI. CONCLUDING REMARKS

In this paper, we have presented a unified approach to determining the Hurwitz or Schur stability of a polynomial. The unification is achieved by a systematic use of the so-called boundary crossing theorem. This results in a simple derivation of the Routh and Jury tables. We expect that many other results in stability theory can be similarly simplified by approaching them via this elementary notion.

REFERENCES

Hervé Chapellat was born in Marseille, France, on October 14, 1961. He graduated from the École Nationale Supérieure des Télécommunications (É.N.S.T.), Paris, in 1986 and received the M.S. in electrical engineering from Texas A&M University, College Station, in 1987. From 1986 to 1987 he was a Research Assistant in the Department of Electrical Engineering at Texas A&M University. He is currently completing the Ph.D. degree in electrical engineering at Texas A&M University, where he is an Assistant Lecturer in the Department of Electrical Engineering. His current research interests are in linear systems theory, robust control theory and signal processing.

Mr. Chapellat received a Distinguished Graduate Research Award from Texas A&M University in 1988.

Mohamed Mansour (SM’77-F’85) was born in Damietta, Egypt, on August 30, 1928. He received the B.Sc. and M.Sc. degree in electrical engineering from the University of Alexandria, Egypt, in 1951 and 1963 respectively, and the Dr. sc.techn. degree in electrical engineering from ETH Zürich, Switzerland, in 1965.

He was Assistant Professor in Electrical Engineering at the Queen’s University, Canada, from 1967 to 1968. He has been Professor and Head of the Department of Automatic Control at ETH Zürich since 1968; he was Dean of Electrical Engineering from 1967 to 1978 and Director of the Institute of Automatic Control and Industrial Electronics, ETH Zürich, during 1976–1978, 1980–1982, 1984–1986, and since 1989. He was Visiting Professor at IBM Research Lab, San Jose, CA, from September to December 1974; at the University of Florida, Gainesville, from January to March 1975; at the University of Illinois, Urbana, from August to December 1981; at the University of California, Berkeley, from January to March 1983; and at the Australian National University, from October to November 1989. His fields of interest are control systems, especially stability theory and digital control, stability of power systems, and digital filters.

Dr. Mansour was President of the Swiss Federation of Automatic Control from 1979 to 1985; member of the Council and Treasurer of IFAC from 1981 to present; President of the 4th IFAC/IFIP Conference on “Digital Computer Applications for Process Control” in 1974; Chairman of the International Program Committee of the IFAC Symposium on “Computer Aided Design of Control Systems” in 1979; Chairman of the International Program Committee of the 4th IFAC/IFORS Symposium on Large-Scale Systems “Theory and Applications” in 1986; Co-Chairman of the IUTAM/IFAC Symposium on “Dynamics of Controlled Mechanical Systems” in 1988; Vice-Chairman of the IFAC Education Committee from 1978–1981; member of the Senate of the Swiss Academy of Natural Sciences from 1979–1985; delegate of IFAC to the United Nations in Geneva since 1983; and, Chairman of the Committee of “Awards and Nominations” of the IEEE Control Systems Society from 1989 to present. He is the recipient of several awards, such as the Silver Medal of ETH Zürich, Switzerland in 1965; Honorary Professor of the Gansu University of Technology, PR China in 1986; Honorary Professor of the Guangxi University, PR China in 1987; and Associate Fellowship of the Third World Academy of Science in 1989.

Shankar P. Bhattacharyya (S’67-M’72-SM’86-F’89) was born on June 23, 1946 in Rangoon, Burma. He received the B.Tech degree (honors) in electrical engineering from the Indian Institute of Technology, Bombay, in 1967, and the M.S. and Ph.D. degrees in electrical engineering from Rice University, Houston, TX, in 1969 and 1971.

He is currently a Professor of Electrical Engineering at Texas A&M University, College Station. He has worked at the Federal University in Rio de Janeiro (1971–1980) where he established the graduate program in automatic control and served as the Chairman of the Electrical Engineering Department from 1978–1980. In 1974 and 1975 he was a National Academy of Sciences Resident Research Associate at the Systems Dynamics Laboratory, Marshall Space Flight Center, NASA. In 1985 and 1986 he served as an Associate Editor of the IEEE TRANSACTIONS ON AUTOMATIC CONTROL and in 1986 he served as a member of the Board of Governors of the IEEE Control Systems Society. He has held visiting lecturing assignments at the University of Florence, Italy, and Pontificia Universidade Catolica, Rio de Janeiro, the Indian Institute of Technology, New Delhi, the Universidade Nacional Autonoma de Mexico, and the Indian Institute of Science, Bangalore. His present research deals with the design of robust control systems.

Dr. Bhattacharyya received a Fulbright lecturing award in 1989 and is a UNDP consultant to the Government of India in 1990.