HYSDEL 3.0 – Manual
Institute of Information Engineering, Automation, and Mathematics
Slovak University of Technology in Bratislava
Radlinského 9
812 37 Bratislava
SLOVAKIA
Martin Herceg, martin.herceg@stuba.sk
Michal Kvasnica, michal.kvasnica@stuba.sk (corresponding author)

Eidgenössische Technische Hochschule Zürich
Swiss Federal Institute of Technology Zurich
Eidgenössische Technische Hochschule Zurich
Automatic Control Laboratory
ETL I 28
Physikstrasse 3
8092 Zurich
SWITZERLAND
Manfred Morari, morari@control.ee.ethz.ch

ABB Switzerland Ltd
Corporate Research
Segelhofstrasse 1
CH-5405 Baden-Dättwil
SWITZERLAND
Sebastian Gaulocher, sebastian.gaulocher@ch.abb.com
Jan Poland, jan.poland@ch.abb.com
Contents

1 Introduction | 1
1.1 HYSDEL | 1
1.2 Motivation | 1
1.3 Goals and Deliverables | 1

2 Installation | 3
2.1 Installation of HYSDEL 3.0 | 3

3 Modeling of hybrid systems | 4
3.1 Mixed-Logical Dynamic System Description | 4
3.1.1 HYSDEL 2.0.5 MLD system formulation | 4
3.1.2 HYSDEL 3.0 MLD system formulation | 4

4 Using HYSDEL 3.0 | 6
4.1 Implementation of HYSDEL 3.0 | 6
4.2 Quick Start | 7
4.3 Model optimization | 9
4.4 Simulations with HYSDEL 3.0 | 10

5 HYSDEL 3.0 - Language Description | 13
5.1 Preliminaries | 13
5.2 List of Language Changes | 14
5.3 INTERFACE Section | 14
5.3.1 INPUT section | 15
5.3.2 STATE section | 17
5.3.3 OUTPUT section | 19
5.3.4 PARAMETER section | 20
5.3.5 MODULE section | 22
5.4 IMPLEMENTATION Section | 24
5.4.1 Indexing | 25
5.4.2 FOR loops | 27
5.4.3 HYSDEL operators and built-in functions | 29
5.4.4 Casting Boolean to real | 30
5.4.5 AUX section | 30
5.4.6 CONTINUOUS section | 32
5.4.7 AUTOMATA section | 32
5.4.8 LINEAR section | 33
5.4.9 LOGIC section | 34
5.4.10 AD section | 34
5.4.11 DA section | 35
5.4.12 MUST section | 36
5.4.13 OUTPUT section | 38
5.5 Merging of HYSDEL Files | 38

iii
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.5.1</td>
<td>Creating slave files</td>
<td>38</td>
</tr>
<tr>
<td>5.5.2</td>
<td>Creating master files</td>
<td>41</td>
</tr>
<tr>
<td>5.5.3</td>
<td>Automatic generation of master files</td>
<td>42</td>
</tr>
<tr>
<td>5.6</td>
<td>EXAMPLES</td>
<td></td>
</tr>
<tr>
<td>5.6.1</td>
<td>Simple code</td>
<td>45</td>
</tr>
<tr>
<td>5.6.2</td>
<td>Vectorized code</td>
<td>47</td>
</tr>
<tr>
<td>5.6.3</td>
<td>Advanced code</td>
<td>49</td>
</tr>
<tr>
<td>6</td>
<td>Control design with HYSDEL 3.0</td>
<td>52</td>
</tr>
<tr>
<td>6.1</td>
<td>Export of MLD system to PWA model</td>
<td>52</td>
</tr>
</tbody>
</table>
1 Introduction

1.1 HYSDEL

HYSDEL (HYbrid SYstem DEscription Language) is a high-level modeling language for the specification of hybrid systems representable by discrete hybrid automata (DHA). It allows hybrid models to be formulated in a manner appealing to the application engineer. The description of a hybrid system in HYSDEL is on an abstract, descriptive level. A tool called HYSDEL compiler uses the abstract HYSDEL description to generate computational models in the form of mixed-logic dynamical (MLD) or piecewise-affine (PWA) systems, that can then be used in computations related to system optimization, verification or control synthesis.

Unlike general-purpose optimization modeling languages (e.g. AMPL or GAMS), HYSDEL is a specialized language for describing a continuous dynamic behavior combined with logical conditions. Tailored to the specific class of problems, algorithms implemented in the HYSDEL compiler generate models which are more compact and which render the optimization problems using such models more efficient compared to formulations obtained by general-purpose modeling software (e.g. AMPL). Posing an optimization problem using general-purpose languages may become a tedious task when it comes to cases involving dynamic behavior.

1.2 Motivation

Since its inception 4 years ago until the current version 2.0.5, HYSDEL has gone through a number of changes. However, during the last 2 years the development of HYSDEL has not been following the progress of research in the topic. In particular, the generation of MLD models from logic conditions uses a relatively limited set of algorithms originally implemented in HYSDEL compiler, while recently several tools have emerged providing means for more advanced MLD and PWA model formulations, most notably Multi-Parametric Toolbox (MPT).

From the usability point of view, the current version of HYSDEL as a language has some major drawbacks. In particular, it does not support vectors and matrices as variables and lacks important language constructs like loops. These drawbacks make the description of large models cumbersome and prone to errors.

The main obstacle for maintenance and improvement of HYSDEL is the fact that the C++ implementation of the compiler, containing ca 10000 lines of code, is poorly documented and the code is written according to obsolete standards of the C++ language. Any major extension of the language and the compiler requires high familiarity with the source code. Having in mind relatively frequent changes in the personnel responsible for HYSDEL maintenance, this requirement cannot be easily met and concerns related to issue have been repeatedly expressed by Andreas Poncet and Eduardo Gallestey.

1.3 Goals and Deliverables

The planned modifications of HYSDEL are summarized in the following:
Rewriting the HYSDEL parser in MATLAB. This change would dramatically increase the maintainability of HYSDEL. More importantly, it would make the integration with other tools available in MATLAB tighter. In particular, it would be possible to use optimization tools and to prune an MLD/PWA model during its generation. An ideal computational engine for such a task would be YALMIP. The expected outcome from this change is a significant improvement in compactness of the generated models that would also result in an increased efficiency of the optimization procedure using the models. It should be stressed that the way how the optimization model is formulated may be crucial for the solvability of the optimization problem.

Extending basic HYSDEL syntax. This change would address extension of the HYSDEL to support variable constructs like vectors and matrices. A Matlab implementation of the HYSDEL parser makes this extension straightforward. The syntax would be further expanded to include paradigms like (nested) loops and to improve the syntax of IF-THEN-ELSE blocks.

Increase modularity. When defining large models, it is convenient to impose a modular design paradigm by introducing compositional models that comprise several HYSDEL files interconnected through common continuous/discrete variables. This modification would essentially be done on a syntactical level. It should ensure, for example that the optimization problems are not unnecessarily bloated when parts of the model are switched off in certain modes.

Merging of Models. Related to the modularity issue, the ETH should investigate the existing method developed by ABB to merge MLD models, and evaluate whether there are better alternatives, with respect to the size and compactness of the resulting models. The results of this investigation are to be kept confidential at the discretion of ABB.

In its current business, ABB relies on having a non-MATLAB based compiler that can be used, for example, on site by untrained personnel and without the requirement of additional licenses. As such the ETH is to investigate concepts that will enable use of the developed platform without a MATLAB license, e.g. based on the MATLAB Compiler.
2 Installation

2.1 Installation of HYSDEL 3.0

Prerequisites to use HYSDEL 3.0 is to have MATLAB installed, with version newer as 7.0. Secondly, for proper use of all functions, it is desirable to have following toolboxes installed:

- MATLAB Simulink (for graphical modeling)
- YALMIP [7] (for compilation of HYSDEL files)

 \[\text{http://control.ee.ethz.ch/~joloef/wiki/pmwiki.php} \]
- MPT Toolbox [5] (for visualization, MLD model tweaking, design of predictive control)

 \[\text{http://control.ee.ethz.ch/~mpt/} \]

YALMIP and MPT Toolboxes are available at the aforementioned web addresses under the GPL public license. HYSDEL 3.0 can be downloaded at the following link

\[\text{http://autlux03.ee.ethz.ch:8000/hysdel3/wiki} \]

After downloading the source file `hysdel_xx-ver.zip`, unzip the file and remove all old links to HYSDEL 3.0 from your MATLAB path. Then, add the main `hysdel3` directory, with all his subdirectories to your MATLAB path. This can be done by selecting your MATLAB menu using the option “File - Set Path”, and then by “Add with Subfolders”. The `hysdel3` contains the following subdirectories:

- `hysdel3/` main directory
- `hysdel3/@xmltree` XML toolbox subfunctions
- `hysdel3/xmltree` XML toolbox
- `hysdel3/hys2xml` parsing functions
- `hysdel3/tests` test functions

which should be included into your MATLAB path. From this point the HYSDEL 3.0 should work properly only on WINDOWS platforms.

If you use LINUX or UNIX platforms, it is necessary to compile the core files of XML toolbox and HYSDEL 3.0 parser. To compile the HYSDEL 3.0 parser, go to `hysdel3/hys2xml/` directory and type

\[\text{make} \]

in your console. This command automatically process the nearest Makefile file and generates an executable file with name `hys2xml`. After completing this task, run MATLAB and go to `hysdel3/@xmltree/private/` directory. Then type the following commands

\[\begin{align*}
 &\text{>> mex xml_findstr.c} \\
 &\text{>> mex xml_cell_find.c} \\
 &\text{>> mex sub_allchildren.c}
\end{align*} \]

which generate mexglx-files in this directory. These are used with XML toolbox to speed up the parsing procedure.

For initial tests, you may go to `hysdel3/tests` directory and try some of the examples included. A quick start reference is given on page 7.
3 Modeling of hybrid systems

3.1 Mixed-Logical Dynamic System Description

Mixed Logical Dynamical (MLD) systems describe in general the behavior of linear discrete-time systems with integrated logical rules. The basic principles, how logical rules are incorporated into overall MLD description, and the theory fundamentals are explained in [2]. This publication is a main source for further references regarding the modeling and control of hybrid systems.

3.1.1 HYSDEL 2.0.5 MLD system formulation

HYSDEL 2.0.5 considers the MLD description, as given in [2], as fundamental for modeling of hybrid systems. In this MLD formulation, the evolution of a hybrid system is given by a set of following equations

\[
\begin{align*}
x(k+1) &= Ax(k) + B_1 u(k) + B_2 \delta(k) + B_3 z(k) \quad (3.1a) \\
y(k) &= Cx(k) + D_1 u(k) + D_2 w(k) + D_3 z(k) \quad (3.1b) \\
E_2 \delta(k) + E_3 z(k) &\leq E_1 u(k) + E_4 x(k) + E_5 \quad (3.1c)
\end{align*}
\]

where (3.1a) is the state-update equation, (3.1b) is the output equation, and linear inequalities (3.1c) describe the switching conditions between the hybrid modes. The MLD model (3.1) uses standard notations, i.e. \(x \in \mathbb{R}^{n_x} \times \{0,1\}^{n_x_b} \) is a vector of continuous and binary states, \(u \in \mathbb{R}^{n_u} \times \{0,1\}^{n_u_b} \) are the (cont. and binary) inputs, \(y \in \mathbb{R}^{n_y} \times \{0,1\}^{n_y_b} \) vector of (cont. and binary) outputs, \(\delta \in \{0,1\}^{n_d} \) represent auxiliary binary, \(z \in \mathbb{R}^{n_z} \) continuous variables, respectively, and \(A, B_1, B_2, B_3, C, D_1, D_2, D_3, E_2, E_3, E_1, E_4, E_5 \) are matrices of suitable dimensions. For a given state \(x(k) \) and input \(u(k) \) the evolution of the MLD system (3.1) is determined by solving \(\delta(k) \) and \(z(k) \) from (3.1c) and updating \(x(k+1), y(k) \).

However, due to the extensive use of HYSDEL 2.0.5, the interpretation of MLD system (3.1) was sometimes misleading when formulating control problems and several shortcomings have been identified. More precisely, the form (3.1c) does not explicitly cover equality constraints as they have to be formulated as double-sided inequalities. Secondly, binary and real variables are not treated equally in the formulation, i.e. sometimes they are part of one vector \((x, u, y) \), and sometimes they are separated \((d, z) \). Furthermore, the MLD description (3.1) does not consider affine terms directly, numerical indexing of matrices is misleading, etc. To overcome these shortcomings, the HYSDEL 3.0 uses different formulation of MLD system (3.1) which will be explained in the next section.

3.1.2 HYSDEL 3.0 MLD system formulation

Arising from numerous shortcomings of the MLD model used by HYSDEL 2.0.5, the HYSDEL 3.0 uses more flexible form to describe the behavior of hybrid systems. In order to clearly distinguish between binary/continuous variables and equalities/inequalities in the MLD formulation, sets of indices are added to the MLD form and new notations are adopted.
More precisely, the new MLD description is given by

\[
\begin{align*}
\dot{x}(k + 1) &= Ax(k) + Bu(k) + B_{aux}w(k) + B_{aff} \\
y(k) &= Cx(k) + D_u u(k) + D_{aux} w(k) + D_{aff} \\
E_x x(k) + E_u u(k) + E_{aux} w(k) &\leq E_{aff}
\end{align*}
\]

(3.2a) (3.2b) (3.2c)

\{sets of indices\} \quad J_x, J_u, J_w, J_{eq}, J_{ineq}

(3.2d)

where the auxiliary vector \(w(k) \) and real variables with strings 'r', 'b'. Precisely, string 'r' refers to real and string 'b' refers to Boolean variable, e.g. to the previous description (3.1), these changes are visible

- Matrices \(B_1, D_1, \) and \(E_1 \) are referred to as \(B_u, D_u, \) and \(E_u \), respectively.
- Auxiliary variables \(\delta(k) \) and \(z(k) \) are merged together in one vector \(^1\) called \(w(k) = [z(k), \delta(k)]^T \)
- Matrix couples \(B_3 - B_2, D_3 - D_2, E_3 - E_2 \) are referred to as \(B_{aux} = [B_3, B_2], D_{aux} = [D_3, D_2], E_{aux} = [E_3, E_2] \), respectively.
- Affine terms \(B_{aff}, D_{aff} \) are included.
- \(E_4 \) and \(E_5 \) are now referred to as \(E_x \) and \(E_{aff} \), respectively. Moreover, the set of inequalities in (3.1) is rewritten to a condensed form (3.2c) and their relations to the old form are \(E_x = -E_4 \) and \(E_u = -E_1 \).
- Indices (3.2d) indicate which variables in the vector correspond to real/binary for states \(J_x \), inputs \(J_u \), and auxiliaries \(J_w \). Additionally, \(J_{eq} \) corresponds to a set of indices which define rows of matrices (3.2c) with equality constraints and \(J_{ineq} \) with inequalities, i.e.

\[
\begin{align*}
E_{eq}^x x(k) + E_{eq}^u u(k) + E_{eq}^{aux} w(k) &= E_{aff}^eq \\
E_{ineq}^x x(k) + E_{ineq}^u u(k) + E_{ineq}^{aux} w(k) &\leq E_{aff}^{ineq}
\end{align*}
\]

Structure of the indexed sets \(J_x, J_u, J_w \) is vector-wise and it distinguishes between binary and real variables with strings 'r', 'b'. Precisely, string 'r' refers to real and string 'b' refers to Boolean variable, e.g.

\[
\{J_x, J_u, J_w\} = \begin{pmatrix} \text{'r'} \ \text{'r'} \ \text{'b'} \ \text{'r'} \end{pmatrix} \quad \text{corresponds to} \quad \begin{pmatrix} \text{REAL} \ \text{REAL} \ \text{BOOL} \ \text{REAL} \end{pmatrix}
\]

To be able to determine the position of a given real/binary variable in a vector, these sets contain also a numerical information. For instance, the location of equality constraints in matrices (3.2c) is given by \(J_{eq} \) and refers to rows in (3.2c) which form equalities e.g.

\[
J_{eq} = \begin{pmatrix} 1 \\ 5 \\ 8 \end{pmatrix} \quad \text{corresponds to} \quad \begin{pmatrix} \text{1st row is an equality constraint} \\ \text{5th row is an equality constraint} \\ \text{8th row is an equality constraint} \end{pmatrix}
\]

Next section describes how the HYSDEL 3.0 generates the MLD model (3.2) and how the obtain all of the data stored in the MLD structure (3.2).

\(^1\)Positions of real/binary variables in this vector can be in different order, this is specified by indexed set \(J_w \).
4 Using HYSDEL 3.0

4.1 Implementation of HYSDEL 3.0

Implementation of the HYSDEL 3.0 does not differ from the procedure in HYSDEL 2.0.5. The process of generating the MLD model (3.2) starts with writing the HYSDEL source file using the HYSDEL language. Consequently, this file is compiled to an appropriate format, which is processed by MATLAB and the output is the MLD structure. This procedure is sketched in Fig. 4.1.

![Diagram of HYSDEL 3.0 implementation](image)

Figure 4.1: Generation of MLD model comprises of compilation of the HYSDEL file and generation of file acceptable by MATLAB.

HYSDEL 2.0.5 uses compiler written in C++ language, which has its own advantages and disadvantages. Crucial part is, that in HYSDEL 3.0 the compilation is totally replaced by a YALMIP module. “YALMIP is a modeling language for defining and solving advanced optimization problems. It is implemented as a free toolbox for MATLAB” [6]. There are several reasons for including YALMIP package [7] into HYSDEL 3.0 version, namely:

- easier maintainability of the compiler
- faster compilation
- direct handling of advanced syntax
- improved condition checking and merging features
- automatic model optimization.

![Diagram of HYSDEL 3.0 compiler](image)

Figure 4.2: New path of generating executable MLD models relies on YALMIP package.

Since YALMIP is a toolbox for MATLAB, manipulation with HYSDEL 3.0 requires knowledge of standard elementary operations with MATLAB, e.g. declaration of variables, accessing internal variable data, concatenating, indexing etc. Furthermore, HYSDEL 3.0 has borrowed MATLAB syntax and thus it is advisable for user to obtain a basic experience with MATLAB.
4.2 Quick Start

Procedure for generation of the MLD system (3.2) starts in writing a corresponding HYSDEL file in your favorite editor using the HYSDEL language and specifying the suffix .hys. Assume, that a file with name my_file.hys was created and written in HYSDEL language. To get an appropriate MLD representation, the file needs to be compiled in MATLAB environment. HYSDEL 3.0 uses the same syntax as an old version of HYSDEL used to do, i.e.

```
>> hysdel3('my_file.hys')
```

where hysdel3 is the main routine for processing the compilation. The routine accepts the path for HYSDEL file which can be written in several forms:

- hysdel3('my_file'), without specifying the file suffix
- hysdel3('dir/subdir/my_file'), with path including subdirectories
- hysdel3('..../my_file'), with path referring to higher directory etc.

By invoking this command in MATLAB, an m-file equivalent of the my_file.hys, i.e. my_file.m is generated in the current directory. This new generated m-file is basically a YALMIP code which contains whole information given by my_file.hys. Depending on the structure of the HYSDEL file, the m-file my_file.m serves as a function for generating the MLD representation. If the original HYSDEL file does not contain any symbolic variables, the MLD structure can be obtained by typing simply the same name

```
>> my_file
```

Otherwise, if some symbolic variables are declared in the original hys-file, it is necessary to assign particular values to these variables before calling the my_file function. For instance, if the hys-file contains two symbolic parameters a, b, we create a structure with concrete values, e.g.

```
>> params.a = 1;
>> params.b = -0.3;
```

Consequently, the MLD structure can be obtained by including the structure params as an argument, i.e.

```
>> my_file(params)
```

For backwards compatibility, the generated function returns also an old MLD form (3.1). This can be achieved by

```
>> [S, Sold] = my_file(params).
```

where the new MLD structure is returned in variable S and old MLD structure in variable $Sold$.

When the structure S with MLD description is available, each particular information about the MLD model (3.2) can be extracted using the MATLAB “dot” syntax. HYSDEL 3.0 uses the same notations as HYSDEL 2.0.5, e.g. dimensions of the variables have the following notations

```
S.nx /* dimension of states */
.nxr /* dimension of real states */
.nxb /* dimension of binary states */
```
Matrices introduced in MLD model (3.2) are stored as fields with the same name, i.e.

\[S.A \]
\[.Bax \]
\[.Baff \]
\[.C \]
\[.Du \]
\[.Daux \]
\[.Daff \]
\[.Ex \]
\[.Eu \]
\[.Eaux \]
\[.Eaff \]

and indexed sets are accessible through substructure \(J \)

\[S.J.X \] /* string of indices ('r' or 'b') for states */
\[.J.U \] /* string of indices ('r' or 'b') for inputs */
\[.J.Y \] /* string of indices ('r' or 'b') for outputs */
\[.J.W \] /* string of indices ('r' or 'b') for auxiliary variables */

Information about the numerical position of variables in a vector is given by a substructure \(j \), i.e.

\[S.j.xr \] /* indices of REAL states */
\[.j.xb \] /* indices of BOOL states */
\[.j.ur \] /* indices of REAL inputs */
\[.j.ub \] /* indices of BOOL inputs */
\[.j.yr \] /* indices of REAL outputs */
\[.j.yb \] /* indices of BOOL outputs */
\[.j.d \] /* indices of BOOL auxiliary variables */
\[.j.z \] /* indices of REAL auxiliary variables */
\[.j.eq \] /* indices of equality constraints */
\[.j.ineq \] /* indices of inequality constraints */

Further information about the MLD model are stored in remaining substructures of the variable \(S \). Here belong the names, types, and dimensions of declared variables, i.e.

\[S.InputName \] /* names of input variables */
\[.InputKind \] /* types of the input variables (real, binary) */
\[.InputLength \] /* dimensions of the input variables */
.StateName /* names of state variables */
.StateKind /* types of the state variables (real, binary) */
.StateLength /* dimensions of the state variables */
.OutputName /* names of output variables */
.OutputKind /* types of the output variables (real, binary) */
.OutputLength /* dimensions of the output variables */
.AuxName /* names of auxiliary variables */
.AuxKind /* types of the auxiliary variables (real, binary) */
.AuxLength /* dimensions of the auxiliary variables */

upper and lower bounds

S.xl /* lower bound on state variables */
.xu /* upper bound on state variables */
.ul /* lower bound on input variables */
.uu /* upper bound on input variables */
.wl /* lower bound on auxiliary variables */
.wu /* upper bound on auxiliary variables */

The number of total constraints is given by the field

S.nc /* total number of constraints (equalities + inequalities) */

Information about possible symbolic variables in the HYSDEL file is stored in the field

S.symtable /* information about declared variables */

as a substructure with additional fields. Validity of the resulting MLD model indicates the field

S.MLDisvalid /* is the MLD model valid */

Since HYSDEL 3.0 offers merging of several MLD structures on a syntactical level, the information about the interconnections between the local models is stored in field

S.connections /* table of interconnections between HYSDEL modules */

Detailed explanation of this feature will be available later, in the merging section.

4.3 Model optimization

One of the significant feature, which offers HYSDEL 3.0, is model optimization. The purpose of model optimization is to exploit as much as possible the structure of the provided constraints, such that the simulation of the resulting MLD system is faster. It has been studied in [4] that the quality of the model can be influenced by big-M formulation [2]. The big-M notion comes in play when logical relations are mixed with certain constraint satisfaction and this is the case of DA or AD section. HYSDEL 2.0 allowed to specify these bounds directly, but HYSDEL 3.0 has this feature disabled and the bounds are computed automatically.

HYSDEL 3.0 offers further model optimization, using the option 'optimize' when calling the compiled file as a function. The procedure for generating better quality models requires first compilation of a hys-file, e.g.

```
>> hysdel3('my_file.hys')
```
and secondly, the model optimization can be invoked using

```matlab
>> [S, Sold] = my_file.hys('optimize')
```

option. If the HYSDEL 3.0 contains any symbolic variables, the use is as follows

```matlab
>> [S, Sold] = my_file.hys(parameters, 'optimize')
```

where the structure `parameters` contains concrete values assigned to symbolic variables.

Note that model optimization is not used by default. This is because this routine requires a search through sets of defined constraints and it may be time consuming.

4.4 Simulations with HYSDEL 3.0

As long as the MLD structure is available in the MATLAB workspace, it is possible to simulate the evolution of a hybrid system using the command

```matlab
>> [xnew, y, w, feas] = h3_mldsim(S, x0, u0)
```

where

- `x0` initial state $x(k)$
- `u0` control input $u(k)$
- `xnew` state update $x(k+1)$
- `y` output $y(k)$ associated to $x(k)$ and $u(k)$
- `w` feasible value of the auxiliary variables $w(k)$
- `feas` 1/0 flag whether the problem was feasible for given $x(k)$ and $u(k)$

The output contains the successor states $x(k+1)$ for given combination of initial state $x(k)$ and input $u(k)$ for one time step. For multiple time steps, it is required to loop this command for changing values of $x(k)$ and $u(k)$.

Another option is to use a graphical level of HYSDEL 3.0. This feature exploits the MATLAB Simulink environment is incorporated as a separate library block. The HYSDEL 3.0 Simulink library can be run with help of command

```matlab
>> h3_lib
```

and outputs a block called “HYSDEL Model” as shown in Fig. 4.3. The HYSDEL 3.0 block contains several fields, namely

- path to HYSDEL source file
- structure with particular values for symbolic variables
- sampling time (default value is 1)
- initial condition $x(k)$

which are necessary for compilation and simulation of MLD system. Some of these fields will be automatically filled with empty brackets “[]” if the hys-file does not contain any symbolical parameters or no states.

After filling the fields in “HYSDEL Model” block, HYSDEL 3.0 automatically compiles the source file and generates the MLD structure. This block is consequently transformed to a subsystem, which contains the equal number of input/output ports as they were declared in the hys-file and an S-Function with MLD model. Real and binary ports are colorfully separated as this is nicely illustrated in Fig. 4.5. To obtain a time evolution of the MLD system it is needed to connect the input/output ports with appropriate data source blocks,
HYSDEL 3.0 contains a Simulink library block “HYSDEL Model”.

Figure 4.3: HYSDEL 3.0 contains a Simulink library block “HYSDEL Model”.

“HYSDEL Model” block accepts the source HYSDEL file with additional parameters.

as well as with output blocks, which are available in standard Simulink library. An example of a simple simulation scenario is also depicted in Fig. 4.5.

Note that if Simulink scheme contains several blocks “HYSDEL Model”, the time needed to simulate the scheme increases because Simulink has to solve multiple optimization problems in one sampling time. Therefore, it is recommended for user to merge multiple MLD systems into one large MLD structure and use this large MLD for simulation. The merging feature is new in HYSDEL 3.0 and it is done on a HYSDEL language level.
Figure 4.5: “HYSDEL Model” block automatically generates input/output ports according to declared inputs/outputs in the HYSDEL source file.
5 HYSDEL 3.0 - Language Description

This chapter describes new features available in this version 3.0 of HYSDEL. The aim will be to outline differences comparing to HYSDEL 2.0.5 version and interpret the new syntax on simple examples. The structure of this chapter follows the syntactical parts of HYSDEL scripting language.

5.1 Preliminaries

A HYSDEL syntax was developed on C-language, and many symbols are thus similar. Structurally, a standard HYSDEL file (or hys-file) comprises of two modes, namely INTERFACE and IMPLEMENTATION. Each of the sections is delimited by curly brackets e.g.

```
section {
    ...
}
```

and this holds for every kind of subsections as well. If one wants to add comments, this is simply done via C-like comments, i.e.

```
section {
    ...
    /* this line is commented */
    ...
}
```

An example of the simplest HYSDEL file might look as follows

```
SYSTEM name {
    /* example of HYSDEL file structure */
    INTERFACE {
        /* interface part serves as declaration of variables */
    }
    IMPLEMENTATION {
        /* implementation part defines relations between declared variables */
    }
}
```

Note that the file begins with SYSTEM string which is followed by the name. The name can be arbitrary, but it should be kept in mind that it usually points to a real object, therefore is recommended to use labels as e.g. tank, valve, pump, belt, etc. Other strings like INTERFACE and IMPLEMENTATION are obligatory. HYSDEL file can be created within any preferred text editor, however, the file should always have the suffix “.hys”, e.g. tank.hys. More importantly, it is recommended to use the name of the SYSTEM also as the file name, e.g. system called tank will be a file tank.hys etc. This becomes reasonable if there are more HYSDEL files in one directory and helps to identify the files easily. In the next content, the aim is to interpret new syntactical changes comparing to HYSDEL 2.0.5 version.
5.2 List of Language Changes

The list of topics of syntactical changes in HYSDEL 3.0 is briefly summarized in the sequel, while the details will be explained in particular sections.

- **INTERFACE section**
 - extensions of the INTERFACE section
 - declaration of INPUT, STATE, OUTPUT variables in scalar/vectorized form
 - declaration of parameters
 - declaration of subsystems

- **IMPLEMENTATION section**
 - extensions of the IMPLEMENTATION section
 - indexing
 - FOR and nested FOR loops
 - operators and built-in functions
 - AUX section
 - CONTINUOUS section
 - AUTOMATA section
 - LINEAR section
 - LOGIC section
 - AD section
 - DA section
 - MUST section
 - OUTPUT section

- Merging of HYSDEL files

5.3 INTERFACE Section

The INTERFACE section defines the main variables which appear for the given SYSTEM. More precisely, this section defines input, state and output variables distinguished by strings INPUT, STATE and OUTPUT. Moreover, additional variables which do not belong to these classes are supposed to be declared in the section called PARAMETER. A new feature of this version is that sometimes the block SYSTEM may contain other subsystems and this block should describe the overall behavior of the system. If this is the case, the MODULE section is to be present where subsystems are declared. This is the main change contrary to previous version.

Syntactical structure of the INTERFACE section has the following form

```
INTERFACE { interface_item }
```

which comprises of curly brackets and interface_item. The interface_item may take only following forms
where each item appears only once in this section. Each interface_item is separated at least with one space character and may be omitted, if it is not required. The order of each item can be arbitrary, it does not play a role for further processing.

Example 1 A structure of a standard HYSDEL file is shown here, where the INTERFACE items are separated by paragraphs, and curly brackets denote visible start- and end-points of each section.

```hysdel
SYSTEM name {
  /* example of HYSDEL file */
  INTERFACE {
    /* declaration of variables, subsystems */
    MODULE {
      /* declaration subsystems */
      ...
    }
    INPUT {
      /* declaration input variables */
      ...
    }
    STATE {
      /* declaration state variables */
      ...
    }
    OUTPUT {
      /* declaration output variables */
      ...
    }
    PARAMETER {
      /* declaration of parameters */
      ...
    }
  }
  IMPLEMENTATION {
    /* relations between declared variables */
    ...
  }
}
```

Related subsections of the INTERFACE part will be explained in more detailed in the sequel.

5.3.1 INPUT section

In the input section are declared input variables of the SYSTEM which can be of type REAL (i.e. \(u_r \in \mathbb{R} \)), and BOOL (i.e. \(u_b \in \{0, 1\} \)). General syntax of the INPUT section remains the same, i.e.

```
INPUT { input_item }
```
where each new input item is separated by at least one character space but the syntax of input item differs for real and binary variables. The input item for real variables takes the form of

\[
\text{REAL } \text{var} \ [\text{var}_\text{min}, \text{var}_\text{max}];
\]

where the string REAL, which denotes the type, is followed by var referring to name of the input variable, the strings [var_min, var_max] express the lower and upper bounds, and semicolon “;” denotes the end of the input item. If there are more than one input variables, they are separated by commas “,”, i.e.

\[
\text{REAL } \text{var1} \ [\text{var}_1\text{min}, \text{var}_2\text{max}], \text{var2} \ [\text{var}_2\text{min}, \text{var}_2\text{max}];
\]

Example 2 Declaration of the scalar variable called “input_flow”, which is bounded between 0 and 10 m\(^3\)/s will take the form

\[
\text{REAL } \text{input}_\text{flow} \ [0, 10];
\]

The input item for Boolean variables takes the form of

\[
\text{BOOL } \text{var};
\]

where the string BOOL, which denotes the type, is followed by var referring to name of the input variable, and semicolon “;” denotes the end of the input item. Here the specification of bounds is not necessary because they are known but if even despite this one specifies the bounds on Boolean variables, HYSDEL will report an error. For more than one variables, separation by commas “,” is required, i.e.

\[
\text{BOOL } \text{var1}, \text{var2}, \text{var3};
\]

Example 3 Declaration of the scalar Boolean variables called “switch” and “running” will take the form

\[
\text{BOOL } \text{switch}, \text{running};
\]

The main change comparing to previous version is that input variables may be defined as vectors, whereas the dimension of the input vector of real variables is \(n_{ur}\) and \(n_{ub}\) for binary variables. This allows to define vectorized variables in the meaning of \(u_r \in \mathbb{R}^{n_{ur}}, u_b \in \{0, 1\}^{n_{ub}}\) and the corresponding syntax is as follows

\[
\text{REAL } \text{var(nur)} \ [\text{var}_1\text{min}, \text{var}_1\text{max}; \text{var}_2\text{min}, \text{var}_2\text{max}; \ldots, \ldots; \text{var}_n\text{ur}_\text{min}, \text{var}_n\text{ur}_\text{max}];
\]

for variables of type REAL and

\[
\text{BOOL } \text{var(nub)};
\]

for Boolean variables. Note that according to expression in normal brackets “(“), which denotes the dimension of the vector, the lower and upper bounds are specified for each variable in this vector. These bounds are separated by commas “,” and semicolon “;” denotes the end of row. If one declares variable in this way HYSDEL inherently assumes a column vector.

Note that the dimension of vector has to be always scalar and integer valued from the set \(N_n = \{1, 2, \ldots\}\) and a particular value has to be always assigned. If the dimension of the vector is a symbolical parameter, HYSDEL will report an error. This holds similarly for STATE, OUTPUT and PARAMETER section.
Example 4 We want to declare the input real vector $u_r \in \mathbb{R}^3$ where the first variable may vary in $u_{r1} \in [-1, 2]$, the second variable in $u_{r2} \in [0.5, 1.3]$, and the third variable in $u_{r3} \in [-0.5, 0.5]$. Moreover, Boolean inputs of length 2, i.e. $u_b \in \{0, 1\}^2$ are present. The declaration of the INPUT section will take the form

```
INPUT {
    REAL ur(3) [-1, 2; 0.5, 1.3; -0.5, 0.5];
    BOOL ub(2);
}
```

where it is not required to separate the lower and upper bounds into rows of the HYSDEL code. Important is that the semicolon as separator is present.

Example 5 Assuming that all variables of the vector have the same bounds, one can use the following syntax

```
INPUT {
    REAL u(5) [-10, 10];
}
```

which can be processed by HYSDEL and simplifies the code.

Example 6 For INPUT/STATE section it is possible to declare variables without specifying lower/upper bounds. If such a file is being compiled, HYSDEL 3.0 automatically assigns predefined bounds to these variables, which are currently set to $\pm 10^4$, e.g.

```
INPUT {
    REAL u(5);
}
```

will result in bounding the input $-10^4 \leq u \leq 10^4$.

5.3.2 STATE section

STATE section declares state variables of the SYSTEM which can be of type REAL (i.e. $x_r \in \mathbb{R}$), and BOOL (i.e. $x_b \in \{0, 1\}$) similarly as in the INPUT section. In general, the syntax of the STATE section is as follows

```
STATE { state_item }
```

where each new `state_item` is separated by at least one character space but the particular syntax of `state_item` differs for real and binary variables. The `state_item` for real variables takes the form of

```
REAL var [var_min, var_max];
```

where the string REAL, which denotes the type, is followed by var referring to name of the state variable, the strings [var_min, var_max] express the lower and upper bounds, and semicolon “;” denotes the end of the `state_item`. If there are more than one state variables, they are separated by commas “,”, i.e.

```
REAL var1 [var_1_min, var_2_max], var2 [var_2_min, var_2_max];
```

Example 7 Declaration of the scalar variables called “position”, which is bounded between 0 and 100 m, and “speed” (bounded from -10 to 10), will take the form
REAL position [0, 1000], speed [-10, 10];

The state item for Boolean variables takes the form of

BOOL var;

where the string BOOL, which denotes the type, is followed by var referring to name of the Boolean state, and semicolon “;” denotes the end of the state item. For more than one variables, separation by commas “,” is required, i.e.

BOOL var1, var2, var3;

Example 8 Declaration of the scalar Boolean state called “is_open” will take the form

BOOL is_open;

The main syntax difference, comparing to previous version, is that both REAL and BOOL variables may be defined as vectors. Denoting the dimension of the real state vector as \(n_{xr} \) and dimension of Boolean state vector \(n_{xb} \) allows one to define vectors in the sense of \(x_r \in \mathbb{R}^{n_{xr}} \), \(x_b \in \{0, 1\}^{n_{xb}} \) and the corresponding syntax is as follows

REAL var(nxr) [var_1_min, var_1_max;
 var_2_min, var_2_max;
 ..., ...;
 var_nxr_min, var_nxr_max];

for variables of type REAL and

BOOL var(nxb);

for Boolean variables. Note that according to expression in normal brackets “(“ “)”, which denotes the dimension of the vector, the lower and upper bounds are specified for each variable in this vector. These bounds are separated by semicolon “;” for each row. If one declares variable in this way HYSDEL inherently assumes a column vector.

Example 9 We want to declare the state real vector \(x_r \in \mathbb{R}^2 \) where the first variable may vary in \(x_{r1} \in [-1, 1] \), and the second variable in \(x_{r2} \in [0, 1] \). Moreover, one Boolean state is present. The declaration of the STATE section will take the form

\[
\text{STATE} \{ \\
 \text{REAL} \ x_r(2) \ [-1, 1; \ 0, 1]; \\
 \text{BOOL} \ x_b;
\}
\]

which defines a real vector \(x_r \) in dimension 2 and scalar Boolean state \(x_b \).

Note that without specifying dimension of the variable, it is always considered as scalar value.
5.3.3 OUTPUT section

In the OUTPUT section, output variables of the SYSTEM are to be declared. These variables can be of type REAL (i.e. \(y_r \in \mathbb{R} \)), and BOOL (i.e. \(y_b \in \{0, 1\} \)), similarly as in the INPUT and STATE section. In general, the syntax of the OUTPUT section is as follows

\[
\text{OUTPUT \{ output_item \}}
\]

where each new output_item is separated by at least one character space and differs for real and binary variables. The output_item for real variables takes the form of

\[
\text{REAL var;}
\]

where the string REAL, which denotes the type, is followed by var referring to name of the output variable. More variables are delimited by commas “,” as in the INPUT and STATE section.

Note that in the OUTPUT section no bounds are specified. It is because the output variable is always considered as an affine function of states and inputs, thus their bounds are automatically inferred.

Example 10 Declaration of the scalar output variables called “y1” and “y2” will be as follows

\[
\text{REAL y1, y2;}
\]

where no bounds are specified.

The output_item for Boolean variables takes the form of

\[
\text{BOOL var;}
\]

where the string BOOL, which denotes the type, is followed by var referring to name of the Boolean output, and semicolon “;” denotes the end of the output_item. If there are more output variables, they are delimited by commas “,”.

Example 11 Declaration of the scalar Boolean output variables “d1”, “d2”, and “d3” will take the form

\[
\text{BOOL d1, d2, d3;}
\]

which is the same as in HYSDEL 2.0.5.

Comparing to previous version, output variables may be defined as vectors. Denoting the dimension of the real output vector as \(n_{yr} \) and dimension of Boolean output vector \(n_{yb} \) allows one to define vectors in the sense of \(y_r \in \mathbb{R}^{n_{yr}} \), \(y_b \in \{0, 1\}^{n_{yb}} \) and the corresponding syntax is then straightforward

\[
\text{REAL var(nyr);}\]

for variables of type REAL where nyr denotes the dimension and

\[
\text{BOOL var(nub);}\]

for Boolean variables with nub specifying the dimension of the column vector.

Example 12 We want to declare the output real vector \(y_r \in \mathbb{R}^2 \), the second output real vector \(q \in \mathbb{R}^2 \) and one binary vector outputs \(d \in \{0, 1\}^3 \).
5.3.4 PARAMETER section

The PARAMETER section declares variables which will be treated as constants through whole HYSDEL file structure. In this case the syntax of the PARAMETER section is as follows

\[
\text{PARAMETER \{ parameter_item \}}
\]

where each parameter_item may take one of the following forms

- declaration of constant scalars

 \[
 \text{type var} = \text{value};
 \]

- declaration of constant column vectors with dimension \(n\) (the dimension does not have to be present for constants)

 \[
 \text{type var} = [\text{value_1}; \text{value_2}; \ldots; \text{value_n}] ;
 \]

- declaration of constant matrices with dimensions \(n \times m\) (the dimension does not have to be present for constants)

 \[
 \text{type var} = [\text{value_11, value_12, \ldots, value_1m};
 \text{value_21, value_22, \ldots, value_2m};
 \ldots, \ldots, \ldots, \ldots;
 \text{value_n1, value_n2, \ldots, value_nm}];
 \]

where type can be either REAL or BOOL. If there are more parameters with constant values, they have to be separated using semicolons \(";"\) as new variable, i.e.

\[
\text{type \text{var1} = \text{value1}; \text{type \text{var2} = \text{value2}; \text{type \text{var3} = \text{value3;}}}
\]

Notations in vector and matrix description remain the same as in INPUT, STATE and OUTPUT section. That is, each element of the row is delimited with comma \(\","\) and the row ends with semicolon \(";"\).

Example 13 We want to declare constants \(a = 1\) as Boolean variable, \(b = [-1, 0.5, -7.3]^T\) and \(D = \begin{pmatrix} -1 & 0 & 0.23 \\ 0.12 & -0.78 & 2.1 \end{pmatrix}\) as real variables. This can be done as follows

\[
\text{PARAMETER \{}
\text{ BOOL a = 1; REAL b = [-1; 0.5; -7.3];}
\text{ REAL D = [-1, 0, 0.23; 0.12, -0.78, 2.1];}
\text{\}}
\]
Moreover, PARAMETER section also allows symbolic parameters of type REAL, assuming that their values will be specified later. If the parameter is symbolic, its declaration reads

```plaintext
PARAMETER {
  type var; /* symbolic scalar */
  type var(n); /* symbolic vector */
  type var(n,m); /* symbolic matrix */
}
```

where the string `type` is either REAL or BOOL and the variable `var` can be scalar, vector with `n` rows, or matrix with dimensions `n` and `m`.

Note that dimension of symbolic vectors/matrices, i.e. `n`, `m` must not be symbolic parameters.

However, the presence of symbolic variables leads to bad conditioning of the resulting MLD model and therefore it is always required to assign particular values to symbolic expressions before compilation.

If there is a strong need to keep symbolic parameter in MLD models, it is recommended to specify lower and upper bounds on each declared symbolic parameter. The syntax in this case is similar to INPUT, STATE and OUTPUT section,

```plaintext
REAL var [var_min, var_max];
```

whereas the declared variable `var` can be only scalar. If there are more symbolic values, they are separated by commas “,”.

Note that huge number of symbolic parameters may prolong the compilation time as the number of involved operations is sensitive on symbolic expressions. Furthermore, symbolic expressions have to be replaced with exact values, if the HYSDEL model is going to be further processed.

HYSDEL language supports several numerical expressions, here is example of allowed formats

```plaintext
REAL a = 1.101;
REAL tol = 1e-3;
REAL eps = 0.5E-4;
REAL Na = 6.0221415e+23;
```

where the decimal number is separated with dot “.” and the decadic power is corresponds to sign “e” or “E”, i.e. 2.03×10^{-2} is written as 2.03e-10. Additionally, HYSDEL language contains some predeclared variables, to which it suffices to refer with a given string. Precisely, Ludolph’s number is given by

```plaintext
pi; /* pi = 3.141592653 */
```

and this value can be overridden by the user.

Example 14 We want to declare boolean constant vector $h = [1, 0, 1]^T$, real matrix $A = \begin{pmatrix} \pi & -0.05 \times 10^2 \\ -0.8 & 12 \times 10^{-3} \end{pmatrix}$, symbolic vector $v \in \mathbb{R}^2$, and symbolic value p which may vary between $[-0.5, 1.8]$. The HYSDEL syntax will take the form
PARAMETER {
 BOOL h = [1; 0; 1]; /* constant vector */
 REAL A = [pi, -0.05e2; -0.8, 12E-3]; /* constant matrix */
 REAL v(2); /* symbolic vector */
 REAL p[-0.5, 1.8]; /* symbolic scalar with given bounds */
}

Note that before evaluating the MLD structure, it is necessary to assign particular values to symbolic parameters, otherwise HYSDEL reports an error.

5.3.5 MODULE section
The MODULE section is a new feature of HYSDEL 3.0 which allows to create subsystems. This is important especially when creating larger HYSDEL structures. To be able to recognize which subsystem is a part of which system a concept of master and slave files is adopted. A slave file will be referred to as a system, which is a part of bigger system, has its own inputs, outputs and acts independently. A master file consist of at least one slave file while inputs and outputs are created by subsystems.

Example 15 Example of a standard HYSDEL slave file, without any subsystems (i.e. without the MODULE section)

SYSTEM valve {
 /* example of slave HYSDEL file referring to a valve */
 INTERFACE {
 /* declaration of variables */
 INPUT { ... }
 STATE { ... }
 OUTPUT { ... }
 PARAMETER { ... }
 }
 IMPLEMENTATION {
 /* relations between declared variables */
 }
}

The syntax of the MODULE section is given by

MODULE { module_item }

where each of the module_item is composed of

name par;

The string name refers to a name of the subsystem which contains parameter par. If there are more parameters, they are separated by commas, i.e.

name par1, par2, par3;

The syntax is similar to defining symbolical parameters in the PARAMETER section while the exact values have to be assigned in the PARAMETER section before compilation.

Example 16 Assume that the SYSTEM “valveA” creates together with SYSTEM “valveB” a system called tank. Since both systems are similar, we will treat them as parameters of one file “valve”. The corresponding syntax of the master file in HYSDEL language will look as follows
SYSTEM tank {
 /* example of master HYSDEL file referring to a tank comprised of two valves */
 INTERFACE {
 /* declaration of variables */
 MODULE {
 valve valveA, valveB;
 }
 INPUT { ... }
 STATE { ... }
 OUTPUT { ... }
 PARAMETER { ... }
 }
 IMPLEMENTATION {
 /* relations between declared variables */
 }
}

where the string valve is the name of the subsystem with parameters valveA and valveB.

The syntax of the master file tank.hys indicates that both of the valves valveA, valveB are parameters of one slave file valve.hys created in the same directory. Overall behavior of the system is now described by this master file and the directory listing is shown in Fig. 5.1. Remember that before compilation, the exact values of the parameters valveA and valveB needs to be assigned.

If the file tank.hys is a part of another system, say it belongs to a storage unit, then this file becomes a slave of the master file, called e.g. storage_unit etc. Obviously, such nesting can continue up the desired level.

![Diagram](image)

Figure 5.1: Example of a SYSTEM tank containing two subsystems valveA, valveB and corresponding directory listing.

For instance if one wants to model a production system which consists of several subsystems the syntax will look as follows

SYSTEM production {
 INTERFACE {
 MODULE {
 storage_tank tank1, tank2;
 conveyor_belt belt;
 packaging packer;
 }
 /* other section are omitted */
 }
}
where the slave files are determined via name of the subsystem and corresponding files. This particular example is explained in section 5.5, on page 38.

5.4 IMPLEMENTATION Section

Relations between variables are determined in the IMPLEMENTATION section. According to type of variables, this section is further partitioned into subsections, which remain the same as in previous version. Syntactical structure of the IMPLEMENTATION section has the following form

\[
\text{IMPLEMENTATION \{ \ implementation_item \ \}}
\]

which comprises of curly brackets and implementation_item. The implementation_item may take only following forms

- AUX \{ /* aux_item */ \}
- CONTINUOUS \{ /* continuous_item */ \}
- AUTOMATA \{ /* automata_item */ \}
- LINEAR \{ /* linear_item */ \}
- LOGIC \{ /* logic_item */ \}
- AD \{ /* ad_item */ \}
- DA \{ /* da_item */ \}
- MUST \{ /* must_item */ \}
- OUTPUT \{ /* output_item */ \}

where each item appears only once in this section. Each implementation_item is separated at least with one space character and may be omitted, if it is not required. The order of each item can be arbitrary, it does not play a role for further processing.

Note that OUTPUT section is also present as in the INTERFACE part but here it has different syntax and semantics.

New changes in the IMPLEMENTATION section affect the syntax of each subsection and the common features are listed as follows:

- indexing
- FOR and nested FOR loops
- operators and built-in functions

These changes will be explained first, before describing the individual changes in each INTERFACE subsection.

Example 17 A structure of the standard HYSDEL file is given next where the meaning of each subsection of the IMPLEMENTATION part is briefly explained

```plaintext
SYSTEM name {
  INTERFACE {
    /* declaration of variables, subsystems */
  }
  IMPLEMENTATION {
    /* relations between declared variables */
    AUX {
```
5.4.1 Indexing

Introducing vectors and matrices induced the extension of the HYSDEL language to use indexed access to internal variables. The syntax is different for vectors and matrices since it depends on the dimension of the variable. Access to vectorized variables has the following syntax

\[
\text{new_var} = \text{var}(\text{ind});
\]

where `new_var` denotes the name of the auxiliary variable (must be defined in AUX section), `var` is the name of the internal variable and `ind` is a vector of indices, referring to position of given elements from a vector. Indexing is based on a Matlab syntax, where the argument `ind` must contain only \(\mathbb{N}_+ = \{1, 2, \ldots\} \) valued elements and its dimension is less or equal to dimension of the variable `var`. Syntax of the `ind` vector can be one of the following:

- increasing/decreasing sequence

\[
\text{ind_start}:\text{increment}:\text{ind_end}
\]

where `ind_start` denotes the starting position of indexed element, `increment` is the value of which the starting value increases/decreases, and `ind_end` indicates the end position of indexed element.
• increasing by one sequence

\[\text{ind}_\text{start}:\text{ind}_\text{end} \]

where the value \text{increment} is now omitted and HYSDEL automatically treats the value as +1

• particular positions

\[[\text{pos}_1, \text{pos}_2, \ldots, \text{pos}_n] \]

where \text{pos}_1, \ldots, \text{pos}_n indicates the particular position of elements

• nested indices

\[\text{ind}(\text{sub}_\text{ind}) \]

where the vector \text{ind} is sub-indexed via the aforementioned ways by vector \text{sub}_\text{ind} with \(N_+ \) values

\textbf{Example 18} In the parameter section were defined two variables. The first variable is a constant vector \(\mathbf{h} = [-0.5, 3, 1, \pi, 0]^T \) and the second variable is a symbolical expression \(\mathbf{g} \in \mathbb{R}^3 \), \(g_1 \in [-1, 1] \), \(g_2 \in [-2, 2] \), \(g_3 \in [-3, 3] \). We want to assign new variables \(\mathbf{z} \) and \(\mathbf{v} \) for particular elements of these vectors. Examples are:

• increasing sequence, e.g. \(\mathbf{z} = [-0.5, 1, 0]^T \)

\[\mathbf{z} = \mathbf{h}(1:2:5); \]

• decreasing sequence, e.g. \(\mathbf{v} = [g_3, g_2]^T \)

\[\mathbf{v} = \mathbf{g}(3:-1:2); \]

• increasing by one, e.g. \(\mathbf{z} = [1, \pi, 0]^T \)

\[\mathbf{z} = \mathbf{h}(3:5); \]

• particular positions, e.g. \(\mathbf{v} = [g_1, g_3]^T \)

\[\mathbf{v} = \mathbf{g}(1,3); \]

• nested indexing, e.g. \(\mathbf{z} = [3, \pi]^T, \mathbf{k} = [2, 3, 4] \)

\[\mathbf{z} = \mathbf{h}(\mathbf{k}(1,3)); \]

where the variable \(\mathbf{k} \) has to be declared first.

Indexing of matrices is similar, however, in this case two indices are required. The indexed syntax takes the following form

\[\text{new}_\text{var} = \text{var}(\text{ind}_\text{row}, \text{ind}_\text{col}); \]

where \text{new}_\text{var} denotes the name of the auxiliary variable (must be defined in AUX section), \text{var} is the name of the internal variable, \text{ind}_\text{row} is a vector of indices referring to rows, and \text{ind}_\text{col} is a vector of indices referring to columns.

Note that indexing is based on a Matlab syntax, where the argument \text{ind} must contain only \(N_+ = \{1, 2, \ldots\} \) valued elements and its dimension is less or equal to dimension of the variable \text{var}.

Syntax of the items \text{ind}_\text{row}, \text{ind}_\text{col} is the same as for vectors the item \text{ind}.
Example 19 In the parameter section a constant matrix is defined

\[
A = \begin{pmatrix}
0 & -5 & -0.8 & 1 \\
-2 & 0.3 & 0.6 & -1.2 \\
0.5 & 0.1 & -3.2 & -1 \\
\end{pmatrix}
\]

We may extract values from matrix \(A\) to form new variable \(B\) as follows

- increasing sequence, e.g.
 \[
 B = A(1:2,1:2); \\
 \]
 \[
 B = \begin{pmatrix}
0 & -5 \\
-2 & 0.3 \\
\end{pmatrix}
\]
- decreasing sequence, e.g.
 \[
 B = A(3:-1:1,1:4); \\
 \]
 \[
 B = \begin{pmatrix}
0.5 & 0.1 & -3.2 & -1 \\
-2 & 0.3 & 0.6 & -1.2 \\
0 & -5 & -0.8 & 1 \\
\end{pmatrix}
\]
- particular positions, e.g. \(B = [0, 0.3, -3.2]^T\)
 \[
 B = A(1:3,[1, 2, 3]); \\
 \]
- nested indexing, e.g. \(B = [0.6, -1.2]^T, i_{\text{row}} = [2, 3], i_{\text{col}} = [1, 2, 3, 4]\)
 \[
 B = h(i_{\text{row}},i_{\text{col}}(3:4)); \\
 \]
 where the variables \(i_{\text{row}}\) and \(i_{\text{col}}\) have to be declared first.

5.4.2 FOR loops

FOR loops are another important feature of HYSDEL 3.0 version. To create a repeated expression, one has to first define an iteration counter in the AUX section according to syntax

\[
\text{AUX} \{ \\
 \text{INDEX iter;} \\
 \}
\]

where the prefix INDEX denotes the class, and \(\text{iter}\) is the name of the iteration variable. If there are more iteration variables required, the additional variables are separated by commas “,” i.e.

\[
\text{AUX} \{ \\
 \text{INDEX iter1, iter2, iter3;} \\
 \}
\]

As the iteration variable is declared, the FOR syntax takes the form of

\[
\text{FOR} \ (\text{iter = ind}) \ \{ \text{repeated_expr} \}
\]

where the string FOR is followed by expression in normal brackets “(,)” and expression in curly brackets “{, }”. The expression in normal brackets is characterized by assignment \(\text{iter = ind}\) where the iteration variable \(\text{iter}\) incrementally follows the set defined by variable \(\text{ind}\) and this variable takes one of the form shown in section indexing 5.4.1. The expression in curly brackets named \(\text{repeated_expr}\) is recursively evaluated for each value of iterator \(\text{iter}\) and can take the form of
depending in which section the FOR loop lies. This allows to use the FOR loop within the whole IMPLEMENTATION section.

Example 20 Suppose, that it is required to repeat ad_item in the AD section for each binary variable \(d \), if state \(x_r \geq 0 \), \(i = 1, 2, 3 \), i.e.

\[
\begin{align*}
d_1 &= x_{r1} \geq 0 \\
d_2 &= x_{r2} \geq 0 \\
d_3 &= x_{r3} \geq 0
\end{align*}
\]

The iteration index, as well as auxiliary Boolean variable \(d \) has to defined first,

\[
\begin{align*}
\text{AUX} \{ \\
&\text{INDEX } i; \\
&\text{BOOL } d(3); \\
\}
\end{align*}
\]

and they can be consequently used in the AD section as follows

\[
\begin{align*}
\text{AD} \{ \\
&\text{FOR (} i = 1:3 \text{)} \{ d(i) = x_r(i) \geq 0; \}
\}
\end{align*}
\]

HYSDEL 3.0 supports also nested loops. In this case the syntax remains the same, but the repeated_expr has now the structure of

\[
\begin{align*}
\text{FOR (} \text{iter = } \text{ind} \text{)} \{ \text{repeated_expr} \}
\end{align*}
\]

which does not differ from the syntax outlined above.

Example 21 Suppose that we want to code a matrix multiplication for state update equation of the form

\[
\begin{pmatrix}
x_{r1}(k+1) \\
x_{r2}(k+1)
\end{pmatrix} = \begin{pmatrix}
1 & 0.5 \\
0.2 & 0.9
\end{pmatrix} \begin{pmatrix}
x_{r1}(k) \\
x_{r2}(k)
\end{pmatrix} + \begin{pmatrix}
1 \\
0
\end{pmatrix} u_r(k)
\]

Assuming that vectors \(x, u \) are already declared, we also declare constant matrices in the INTERFACE section

\[
\begin{align*}
\text{PARAMETER} \{ \\
&\text{REAL } A = [1, 0.5; 0.2, 0.9]; \\
&\text{REAL } B = [1; 0]; \\
\}
\end{align*}
\]

Secondly, we define iteration counters in IMPLEMENTATION section

\[
\begin{align*}
\text{AUX} \{ \\
&\text{INDEX } i,j; \\
\}
\end{align*}
\]
and then use the nested loop syntax as follows

\[
\text{CONTINUOUS} \{
 \text{FOR } (i=1:2) \{ \text{x}(i) = 0; \\
 \text{FOR } (j=1:2) \{ \text{x}(i) = A(i,j) * \text{x}(j) + \text{x}(i); \}
 \text{x}(i) = \text{x}(i) + B(i) * u;
 \}
\}
\]

Example 22 FOR loops allow also to more complicated expressions. For instance, indexing in a power sequence \(2^i \) where \(i = 1, \ldots, 5 \). Assume that for given vector \(h \in \mathbb{R}^{32} \) it is required to assign a real variable \(z \in \mathbb{R}^5 \) according to power sequence indexing. In HYSDEL it can be written as follows

\[
\text{FOR } (i=1:5) \{ \text{z}(i) = h(2^i); \}
\]

where the variables \(i, z, \) and \(h \) were previously declared.

5.4.3 HYSDEL operators and built-in functions

Throughout the whole HYSDEL file various relations between variables can be defined. Because the variables may be also vectors (matrices), the list of supported operators is distinguished by

- element-wise operations, in Tab. 5.1
- and vector functions, in Tab. 5.2.

For Boolean variables HYSDEL supports operators, as summarized in Tab. 5.3. Additionally, syntactical functions are available, which allow condition checking and are summarized in Tab. 5.4.

Since the variables may be constants as well as varying, the operators cannot be used arbitrary. This holds especially for varying variables of type REAL (states, inputs, outputs, auxiliary). Denoting this group with notation \(v \), only following relations are allowed

- relations between varying variables \(v_1 \) and \(v_2 \) of type REAL
 - addition: \(v_1 + v_2 \)
 - subtraction: \(v_1 - v_2 \)
- relations between varying variable \(v \) and constant parameter \(p \) of type REAL
 - addition: \(v + p = p + v \) (\(v \) and \(p \) have the same dimension)
 - subtraction: \(v - p = -p + v \) (\(v \) and \(p \) have the same dimension)
 - multiplication: \(v * p = p * v \) (\(p \) is scalar)
 - division: \(v/p = 1/p * v \) (\(p \) is scalar except 0)
- operations summarized in tables 5.1, 5.2, and 5.4 hold for relations between two parameters \(p_1, p_2 \) of type REAL
- for variables of type BOOL are only Boolean expressions valid (Tab. 5.3. However, operations of type REAL can be used but only if the Boolean variable is retyped to class REAL.
If in the expression two or more operators appear, their evaluation is according to operator priority. That is for instance, \(v = a + b \times c \) will have the result \(v = a + (b \times c) \). In general, it is recommended to use normal brackets “(,)” to separate variables into groups and evaluate bracketed and hence prior expressions first.

Note that nonlinear operators are not allowed for any state/input/output and auxiliary variables and HYSDEL 3.0 will report an error whenever such case occurs.

5.4.4 Casting Boolean to real

Using the keyword

\[(\text{REAL Boolean_var})\]

it is possible to cast a Boolean variable \text{Boolean_var} into a real variable. This function allows to operate with binary variables using operators defined for variables of class REAL.

Example 23 Suppose that in the INTERFACE section a Boolean variable was declared

```plaintext
INPUT { BOOL d(2); }
```

and we want to use it for operations with real numbers. The cast operator

```plaintext
x = x + (\text{REAL } d);
```

treats both Boolean inputs \(d \) as real variables.

If one wants to retype a Boolean expression into a real number, this can be done by defining auxiliary logic variable in LOGIC section and apply the cast operator for this auxiliary variable.

Example 24 Suppose that one wants to recast the expression \(d_1 \& d_2 \) to a class REAL. Firstly, an additional variable needs to be created in LOGIC section, e.g.

```plaintext
LOGIC { d = d1 \& d2; }
```

and afterward, the cast operator can be applied to this variable, e.g.

```plaintext
CONTINUOUS { x = 2.3*(\text{REAL } d) - 0.5*u; }
```

5.4.5 AUX section

In the AUX section one has to declare auxiliary variables needed for derivations of further relations in the IMPLEMENTATION section. The declaration of these variables follows with specifying the type of the variable (REAL, BOOL or INDEX) and defining the name, e.g.

```plaintext
type var;
```

where the string \text{type} can be REAL, BOOL or INDEX and it is followed by a variable \text{var}. If there are more variables, they are delimited by commas “,”. Declaration of vectors uses the same syntax as mentioned in INPUT/STATE/OUTPUT section.

Note that whenever there is a FOR loop in HYSDEL file, the looping variable has to be defined here as INDEX.
Table 5.1: List of supported element-wise operators on variables of type REAL.

<table>
<thead>
<tr>
<th>Relation</th>
<th>Operator</th>
<th>HYSDEL representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>addition</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>subtraction</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>multiplication</td>
<td>.</td>
<td>*</td>
</tr>
<tr>
<td>elementwise multiplication</td>
<td>.</td>
<td>.*</td>
</tr>
<tr>
<td>division</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>elementwise division</td>
<td>/</td>
<td>./</td>
</tr>
<tr>
<td>absolute value</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a to the power of b</td>
<td>a^b</td>
<td>a.^b</td>
</tr>
<tr>
<td>e^b</td>
<td>exp b</td>
<td>exp(b)</td>
</tr>
<tr>
<td>square root</td>
<td>\sqrt{a}</td>
<td>sqrt(a)</td>
</tr>
<tr>
<td>common logarithm</td>
<td>log a</td>
<td>log10(a)</td>
</tr>
<tr>
<td>natural logarithm</td>
<td>ln a</td>
<td>log(a)</td>
</tr>
<tr>
<td>binary logarithm</td>
<td>log$_e$ a</td>
<td>log2(a)</td>
</tr>
<tr>
<td>cosine</td>
<td>cos a</td>
<td>cos(a)</td>
</tr>
<tr>
<td>sine</td>
<td>sin a</td>
<td>sin(a)</td>
</tr>
<tr>
<td>tangent</td>
<td>tan a</td>
<td>tan(a)</td>
</tr>
<tr>
<td>rounding function</td>
<td>round a</td>
<td>round(a)</td>
</tr>
<tr>
<td>rounding function</td>
<td>ceil a</td>
<td>ceil(a)</td>
</tr>
<tr>
<td>rounding function</td>
<td>floor a</td>
<td>floor(a)</td>
</tr>
</tbody>
</table>

Table 5.2: List of supported vector/matrix operators on variables of type REAL.

<table>
<thead>
<tr>
<th>Relation</th>
<th>Operator</th>
<th>HYSDEL representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>matrix/vector addition</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>matrix/vector subtraction</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>matrix/vector multiplication</td>
<td>.</td>
<td>*</td>
</tr>
<tr>
<td>matrix power</td>
<td>A^b</td>
<td>A^b</td>
</tr>
<tr>
<td>vector sum</td>
<td>$\sum a_i$</td>
<td>sum(a)</td>
</tr>
<tr>
<td>1-norm of a vector</td>
<td>$\sum</td>
<td>a_i</td>
</tr>
<tr>
<td>∞-norm of a vector</td>
<td>$\max</td>
<td>a_i</td>
</tr>
</tbody>
</table>

Table 5.3: List of supported operators on variables of type BOOL.

<table>
<thead>
<tr>
<th>Relation</th>
<th>Operator</th>
<th>HYSDEL representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>or</td>
<td>\lor</td>
<td>\lor</td>
</tr>
<tr>
<td>and</td>
<td>\land</td>
<td>\land</td>
</tr>
<tr>
<td>one way implication</td>
<td>\Rightarrow</td>
<td>\Rightarrow</td>
</tr>
<tr>
<td>one way implication</td>
<td>\Leftarrow</td>
<td>\Leftarrow</td>
</tr>
<tr>
<td>equivalence</td>
<td>\Leftrightarrow</td>
<td>\Leftrightarrow</td>
</tr>
<tr>
<td>negation</td>
<td>\neg</td>
<td>\neg</td>
</tr>
</tbody>
</table>

Table 5.4: List of functions for condition checking.

<table>
<thead>
<tr>
<th>Function</th>
<th>HYSDEL representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>true if all elements of a vector are nonzero</td>
<td>all(a)</td>
</tr>
<tr>
<td>true if any element of a vector is nonzero</td>
<td>any(a)</td>
</tr>
</tbody>
</table>
Example 25 Suppose that in the AUX section we have to declare two iterators \(i, j \), two real vectors \(z \in \mathbb{R}^3 \), \(v \in \mathbb{R}^2 \) and Boolean variable \(d \in \{0, 1\}^5 \). The AUX syntax takes the following form

```hymen
AUX {
  INDEX i,j; /* iteration counters */
  REAL z(3),v(2); /* auxiliary REAL vectors */
  BOOL d(5); /* auxiliary BOOL vector */
}
```

Contrary to INTERFACE section, here lower and upper bounds on the variables are not given. The values are automatically calculated from variables declared in the INTERFACE section since AUX variables are affine functions of these variables. Moreover, no constants, as well as no parameters are here declared.

5.4.6 CONTINUOUS section

In the CONTINUOUS section the state update equations for variables of type REAL are to be defined. The general syntax is given as

```hymen
CONTINUOUS { continuous_item }
```

where the `continuous_item` may be inside a FOR loop and takes the form

```hymen
var = affine_expr;
```

The variable \(\text{var} \) corresponds to the state variable declared in the section STATE and it can be scalar or vectorized expression. The `affine_expr` is an affine function of parameters, inputs, states and auxiliary variables, which have been previously declared.

Note that only variables of type REAL, declared in STATE section can be assigned here.

Example 26 Suppose that the state update equation is driven by

\[
x(k+1) = Ax(k) + Bu(k) + f
\]

where the matrices \(A, B, f \) are constant parameters, \(x \) is state, \(u \) is input. This can be written in HYSDEL language as short vectorized form, i.e.

```hymen
CONTINUOUS {
  x = A*x + B*u + f;
}
```

5.4.7 AUTOMATA section

The AUTOMATA section describes the state transition equations for variables of type BOOL. The general syntax takes the form

```hymen
AUTOMATA { automata_item }
```

where the `automata_item` may be inside a FOR loop and is built by

```hymen
var = Boolean_expr;
```
The variable \texttt{var} corresponds to the Boolean variable defined in the section \texttt{STATE} and it can be scalar or vectorized expression. The \texttt{Boolean_expr} is a combination of Boolean inputs, Boolean states, and auxiliary Boolean variables with operators reported in Tab. 5.3.

Note that only variables of type \texttt{BOOL}, declared in \texttt{STATE} section can be assigned here.

\textbf{Example 27} Suppose that the Boolean state update is driven by following relations

\[x_2(k+1) = u_1(k) \lor (u_2(k) \land \neg x_1(k)) \]

Related HYSDEL syntax will take the form of

\begin{verbatim}
AUTOMATA {
 xb(2) = ub(1) | (ub(2) & \neg xb(1));
}
\end{verbatim}

\textbf{5.4.8 LINEAR section}

In the LINEAR section it is allowed to define additional variables, which are build by affine expressions of states, inputs, parameters and auxiliary variables of type REAL. In general, the structure of the LINEAR section is given by

\begin{verbatim}
LINEAR { linear_item }
\end{verbatim}

where the \texttt{linear_item} may be inside a FOR loop and takes the form of

\[\texttt{var} = \texttt{affine_expr}; \]

The variable \texttt{var} is of type \texttt{REAL} and was previously declared in the \texttt{AUX} section. The \texttt{affine_expr} is an affine function of parameters, inputs, states and auxiliary variables of type \texttt{REAL}, which have been previously declared.

\textbf{Example 28} Consider that it is suitable to define an auxiliary continuous variable

\[g = -0.5x_1 + 3 \]

which is an affine function of the state \(x \in \mathbb{R}^2 \). The variable is firstly declared in the \texttt{AUX} section,

\begin{verbatim}
AUX {
 REAL g;
}
\end{verbatim}

and consequently, the expression in LINEAR section takes the form

\begin{verbatim}
LINEAR {
 g = -0.5*x(1) + 3;
}
\end{verbatim}

Furthermore, the LINEAR section is devoted to determine relations between subsystems and applies only if there is \texttt{MODULE} section present. More precisely, the syntax is given by

\[\texttt{var} = \texttt{affine_expr}; \]

where the variable \texttt{var} access the internal input or output variable of type \texttt{REAL} of the declared subsystem. The \texttt{affine_expr} is an affine function of internal inputs or output variables of type \texttt{REAL} of the declared subsystems. More detailed view for merging of subsystems will be given in special section.

Note that LINEAR section serves also for declaration of interconnection between subsystems (if they are declared in \texttt{MODULE} section).
5.4.9 LOGIC section

LOGIC section allows to define additional relations between variables of type BOOL which might simplify the overall notations. In general the syntax is given by

\[
\text{LOGIC \{ logic_item \}}
\]

where the \text{logic_item} may be inside a FOR loop and is built by

\[
\text{var = Boolean_expr;}
\]

The variable \text{var} corresponds to the Boolean variable defined in the section AUX and it can be scalar or vectorized expression. The \text{Boolean_expr} is a combination of Boolean inputs, Boolean states, and auxiliary Boolean variables with operators reported in Tab. 5.3.

Example 29 Suppose that we want to introduce the Boolean variable \(d = x_1 \land (\neg x_2 \lor \neg x_3)\), which is a function of Boolean states \(x \in \{0, 1\}^3\). We proceed first with variable declaration in AUX section

\[
\text{AUX \{}
\]
\[
\text{BOOL d;}\]
\[
\}
\]

and follow with LOGIC section

\[
\text{LOGIC \{}
\]
\[
\text{d = x(1) \& (~x(2) \lor ~x(3));}\]
\[
\}
\]

5.4.10 AD section

AD section is used to express the relations between variables of type REAL to Boolean variables only with help of logical operator equivalence. Here, the equivalence operator \(\leftrightarrow\) is replaced with = operator and the syntax is given as

\[
\text{AD \{ ad_item \}}
\]

where the \text{ad_item} might be inside a FOR loop and it can be one of the following

\[
\begin{align*}
\text{var} & = \text{affine_expr} > \text{real_num}; \\
\text{var} & = \text{affine_expr} \geq \text{real_num}; \\
\text{var} & = \text{affine_expr} < \text{real_num}; \\
\text{var} & = \text{affine_expr} \leq \text{real_num}; \\
\text{var} & = \text{affine_expr} == \text{real_num};
\end{align*}
\]

The variable \text{var} is of type BOOL and has to be declared in the AUX section. The \text{affine_expr} is a function of states, inputs, parameters and auxiliary variables of type REAL. Operator \(\geq\) or \(\geq\) denotes the greater or equal inequality \((\geq)\), operator \(<=\) or \(<\) is less or equal inequality \((\leq)\), and operator \(==\) stands for equality constraint. Expression \text{real_num} is a real valued number.

Note that whenever a binary variable is associated to equality constraint, this assignment is numerically sensible, and it might lead to unexpected results.

34
Example 30 Suppose that we want to assign to a Boolean variable \(d \in \{0, 1\}^3 \) value 1 if certain inequality is satisfied, otherwise it will be 0.

\[
d_1 = \begin{cases} 1 & \text{if } x_1 + 2u_2 \geq 0, \\ 0 & \text{otherwise}
\end{cases}, \quad

\begin{cases} 1 & \text{if } 0.5x_2 - 3x_3 \leq 0, \\ 0 & \text{otherwise}
\end{cases}, \quad

\begin{cases} 1 & \text{if } x_1 \geq 1.2, \\ 0 & \text{otherwise}
\end{cases}
\]

HYSDEL allows to model this behavior using AD syntax

```
AUX {
    BOOL d(3);
}
AD {
    d(1) = x(1) + 2*u(2) >= 0;
    d(2) = 0.5*x(2) - 3*x(3) <= 0;
    d(3) = x(1) >= 1.2;
}
```

Previous version required bounds on auxiliary variables \(\text{var} \) in the form of

\[
\text{var} = \text{affine_expr} \geq \text{real_num} \ [\text{min}, \text{max}, \text{eps}]; \\
\text{var} = \text{affine_expr} \leq \text{real_num} \ [\text{min}, \text{max}, \text{eps}];
\]

but this syntax is obsolete and related bounds calculation are now obtained automatically.

If the bounds will be provided anyway, HYSDEL will raise a warning.

Note that AD section does not use curly brackets “{ “}” to assign the auxiliary variable.

5.4.11 DA section

The DA section defines continuous variables according to if-then-else conditions. HYSDEL 3.0 language supports the following syntax

```
DA { da_item }
```

where the \(da_item \) might be inside a FOR loop or and it can be one of the following

\[
\text{var} = \{ \text{IF cond THEN affine_expr } \}; \\
\text{var} = \{ \text{IF cond THEN affine_expr ELSE affine_expr} \};
\]

The variable \(\text{var} \) corresponds to auxiliary variable of type REAL, defined in the AUX section.

Expression \(\text{cond} \) can be defined as

\[
\text{affine_expr} > \text{real_num}; \\
\text{affine_expr} \geq \text{real_num}; \\
\text{affine_expr} < \text{real_num}; \\
\text{affine_expr} \leq \text{real_num}; \\
\text{affine_expr} == \text{real_num}; \\
\text{Boolean_expr};
\]

which denotes certain condition satisfaction. The \(\text{affine_expr} \) is a function of states, inputs, parameters and auxiliary variables of type REAL. Operator \(\geq \) or \(> \) denotes the greater or equal inequality (\(\geq \)), operator \(\leq \) or \(< \) is less or equal inequality (\(\leq \)) and \(== \) stands for equality constraint (which is numerically very sensible). Expression \(\text{real_num} \) is a real valued number. The \(\text{Boolean_expr} \) is a function of Boolean states, inputs, parameters and auxiliary variables combined with operators listed in Tab. 5.3.

Note that if the ELSE string is missing, HYSDEL automatically treats the value equal 0.
Example 31 Suppose that we want to introduce an auxiliary variable z which depends on a continuous state x and a binary input u_b as follows

$$z = \begin{cases}
 x & \text{if } u_b = 1 \\
 -x & \text{if } u_b = 0
\end{cases}$$

HYSDEL models this relation by

```hysdel
AUX {
  REAL z;
}
DA {
  z = { IF u_b THEN x ELSE -x }; 
}
```

Example 32 It is also possible to define switching conditions using real expressions. Suppose that we want to introduce an auxiliary variable z which depends on continuous states x_1 and x_2

$$z = \begin{cases}
 2x_1 & \text{if } x_2 \geq 0 \\
 -x_1 + 0.5x_2 & \text{if } x_2 \leq 0
\end{cases}$$

HYSDEL 3.0 allows to models this relation by

```hysdel
AUX {
  REAL z;
}
DA {
  z = { IF x(2) >= 0 THEN 2*x(1) ELSE -x(1)+0.5*x(2) }; 
}
```

and this syntax is more familiar to describe the behavior of piecewise affine systems.

Similarly as in the AD section, previous version required bounds on variables

```hysdel
var = { IF cond THEN affine_expr [min, max, eps] }; 
var = { IF cond THEN affine_expr [min, max, eps] 
  ELSE affine_expr [min, max, eps] }; 
```

This syntax is obsolete and related bounds calculation is now performed automatically. HYSDEL will report a warning if this syntax will be used.

5.4.12 MUST section

MUST section specifies constraints on input, state, and output variables. Regardless of the type of variables, it is required that these condition will be fulfilled for the whole time. The MUST section takes the following syntax

```hysdel
MUST { must_item } 
```

where the `must_item` can be one of the following

- `real_cond;`
- `Boolean_expr;`
- `real_cond B0 Boolean_expr;`
- `Boolean_expr B0 real_cond;`
which denotes certain condition satisfaction. Expression real_cond is given by

\[
\begin{align*}
\text{affine_expr} & > \text{real_num}; \\
\text{affine_expr} & >= \text{real_num}; \\
\text{affine_expr} & < \text{real_num}; \\
\text{affine_expr} & <= \text{real_num}; \\
\text{affine_expr} & == \text{real_num};
\end{align*}
\]

and BO is a Boolean operator from Tab. 5.3. The affine_expr is a function of states, inputs, parameters and auxiliary variables of type REAL. Operator \geq or $>$ denotes the greater or equal inequality constraint (\geq), operator \leq or $<$ is less or equal inequality constraint (\leq), and $==$ is an equality constraint. Expression real_num is a real valued number. The Boolean_expr is a function of Boolean states, inputs, parameters and auxiliary variables combined with operators listed in Tab. 5.3.

Example 33 Consider a system where the one input real variable $u_r \in \mathbb{R}$ and five states $x_r \in \mathbb{R}^5$. Moreover, although the bounds on these variables have been declared, additional constraints are introduced, which are subsets of the declared bounds, i.e. $u_r \in [-2, 2]$ and $x_{r1} \in [-1, 5], x_{r2} \in [-2, 3.4], x_{r3} \in [0.5, 2.8]$. These constraints are written in MUST section as follows

\[
\begin{align*}
\text{MUST} & \{ \\
& u_r \geq -2; \\
& u_r \leq 2; \\
& x_{r}(1:3) \geq [-1; -2; 0.5]; \\
& x_{r}(1:3) \leq [5; 3.4; 2.8];
\}
\end{align*}
\]

Example 34 For binary variables, one way implications are allowed, as well as equivalence. Example is a system with binary inputs $u_b \in \{0, 1\}^2$ which implies that a value of auxiliary binary variable will be 0 or 1, e.g.

\[d_1 \Rightarrow u_{b1}, \quad d_2 \Leftarrow u_{b2}, \quad d_3 \Leftrightarrow x_{b2}\]

and it can be written in HYSDEL as

\[
\begin{align*}
\text{MUST} & \{ \\
& d(1) \rightarrow ub(1); \\
& d(2) \leftarrow ub(2); \\
& d(3) \leftrightarrow zb(2);
\}
\end{align*}
\]

Example 35 HYSDEL 3.0 supports also combined REAL–BOOL expressions. Consider a state vector $x \in \mathbb{R}^2$, and binary input $u_b \in \{0, 1\}^2$. One may require the constraints as

\[u_{b1} \Rightarrow x_1 \geq 0, \quad x_1 + 2x_2 \geq -2 \Leftarrow \neg u_{b2}, \quad u_{b1} \lor u_{b2} \Leftrightarrow x_1 - x_2 \geq 1\]

and it can be written in HYSDEL as

\[
\begin{align*}
\text{MUST} & \{ \\
& ub(10) \rightarrow x(1) >= 0; \\
& x(1) + 2*x(2) \Leftarrow \neg ub(2); \\
& (ub(1) | ub(2)) \leftrightarrow x(1) - x(2) >= 1;
\}
\end{align*}
\]

Note that when combining Boolean_expr with real_cond it is recommended to use normal brackets “()” for bracketing the Boolean_expr, in order to avoid non-correct compilation.
5.4.13 OUTPUT section

The OUTPUT section specifies the output variables for the overall MLD system. Output variables can be both of type REAL and BOOL. The following syntax is accepted

\[
\text{OUTPUT \{ output_item \}}
\]

where the \text{output_item} might be inside a FOR loop and it can be one of the following

\[
\begin{align*}
\text{var} & = \text{affine_expr}; \\
\text{var} & = \text{Boolean_expr};
\end{align*}
\]

The variable \text{var} corresponds to a variable declared in INTERFACE part, OUTPUT section which is either of type REAL and BOOL. According to its type, the \text{affine_expr} is assigned to REAL output and \text{Boolean_expr} is assigned to Boolean output.

Example 36 Suppose that current system has both real \(x_r \) and Boolean states \(x_b \). If we want to write output equations to these states, e.g.

\[
\begin{align*}
y_r & = x_r \\
y_b & = x_b
\end{align*}
\]

the HYSDEL syntax takes the form of

\[
\text{OUTPUT \{ }
\begin{align*}
y_r & = x_r; \\
y_b & = x_b;
\end{align*}
\text{\}}
\]

Note that in OUTPUT section it is not allowed to assign other output variables, as declared in OUTPUT section in INTERFACE part.

5.5 Merging of HYSDEL Files

This section introduces a new feature available in HYSDEL 3.0 which allows merging of hysdel files to subsystems. Initial information about merging was given in the MODULE section but here is this topic explained more in details.

5.5.1 Creating slave files

Similarly as all the variables, subsystems needs to be declared first too. For this purpose a new section of INTERFACE part is created called MODULE. Here are the subsystems declared according their name and containing parameters, as explained in section 5.3.5. Subsystems are independent HYSDEL files with given names, inputs, outputs, states, parameters and are contained in the same directory as the master file.

Consider a simple production system which is built by two storage tanks, one conveyor belt and a packaging unit, as illustrated in Fig. 5.2. The task is to model the whole production unit using MLD system. First at all the production unit is virtually separated into subsystems, as shown in Fig. 5.3 and the connections between the subsystems are clarified. Now it is clear which file should be regarded as slave and which as master. We shall call the master file \text{production} and at first sight it seems that one would declare four slave files, e.g.

1. \text{tank1}
but because tanks \texttt{tank1} and \texttt{tank2} have the same dynamics, it is better to treat these objects as parameters of one file. Subsequently, we can group these both tanks into one file and end up in only three subsystems, e.g.

1. \texttt{storage_tank}
2. \texttt{conveyor_belt}
3. \texttt{packaging}

where each of the objects is now an individual hys-file and can contain arbitrary number of parameters. Declaration of these subsystems in HYSDEL will take a form

```hysdel
MODULE {
    storage\_tank tank1, tank2;
    conveyor\_belt belt;
    packaging packer;
}
```

and it corresponds to three HYSDEL files which will be included, i.e.
1. storage_tank.hys
2. conveyor_belt.hys
3. packaging.hys

Each of these file is a slave file. For instance, the file storage_tank.hys may be written in HYSDEL language as follows:

```hys
SYSTEM storage_tank {
  INTERFACE {
    STATE { REAL level; }
    INPUT { REAL u; }
    OUTPUT { REAL y; }
    PARAMETER {
      REAL diameter;
      REAL k=1e-2;
    }
  }
  IMPLEMENTATION {
    CONTINUOUS { level = 0.9*level+1/diameter*(u-k*level); }
    OUTPUT { y = level; }
  }
}
```

where we decided to keep one parameter as symbolic. This is important, as it allows to define only one hys-file which can be used several times for different values of this parameter, thus referring to multiple objects. Similarly, we create other slave files, in particular:

```hys
SYSTEM conveyor_belt {
  INTERFACE {
    STATE { REAL speed [0, 6]; }
    INPUT { BOOL sw; }
    OUTPUT { REAL y; }
    PARAMETER {
      REAL k=[0.5, 0.1];
    }
  }
  IMPLEMENTATION {
    AUX { REAL z; }
    DA { z = {IF sw THEN k(1)*speed+2*(REAL sw) ELSE k(2)*speed }; }
    CONTINUOUS { speed = z; }
    OUTPUT { y = speed; }
  }
}
```

and

```hys
SYSTEM packaging {
  INTERFACE {
    INPUT { REAL inflow [0, 50]; }
    OUTPUT { REAL outflow; }
  }
}
```
which does not contain any symbolic parameters. As we have declared the slave files, each of them can be compiled individually and used for simulation. However, since we are interested to have a single MLD file, next section gives an outline how to do this.

5.5.2 Creating master files

Creating a master file is similar to the HYSDEL language concept, that is, first the slave files are declared and secondly, the relations between them are determined. Declaration of subsystems is done in MODULE section, as already described in previous subsection, or you may consider the reference to MODULE section 5.3.5 (page 22).

Connection between inputs and outputs of subsystems are determined in LINEAR or LOGIC section, depending on the class of connected variables. Here is important to know the “dot” syntax of MATLAB, which is used to access the inputs/outputs of subsystem in a hierarchy tree. For instance, we have declared parameters `tank1` and `tank2` in a MODULE section of a slave file `storage.tank`, which has input variable denoted as `u` and output variable `y`. Access to these variables is done via “dot” syntax, i.e.

```plaintext
tank1.y
tank1.u
tank2.y
tank2.u
```

and it can be extended to vector notation, e.g. `tank1.y(1)` etc. Using this syntax, we can now merge the slave files to one single master file with name `production.hys`

```plaintext
SYSTEM production {
  INTERFACE {
    MODULE {
      storage_tank tank1, tank2;
      conveyor_belt belt;
      packaging packer;
    }
    STATE { REAL time [0, 1000]; }
    INPUT { REAL raw_flow(2) [0, 5; 0, 5]; }
    OUTPUT { REAL packages; }
  }
  IMPLEMENTATION {
    AUX { BOOL d; }
    LINEAR {
      tank1.u = raw_flow(1);
      tank2.u = raw_flow(2);
      packer.inflow = 0.1*tank1.y + 0.5*tank2.y;
    }
    LOGIC { belt.sw = d; }
    AD { d = packer.inflow > 0; }
    CONTINUOUS { time = time + 1; }
  }
}
```
OUTPUT { packages = packer.outflow; }
MUST {
 tank1.level <= 100;
 tank2.level <= 80;
}
}

where all the sub-connections are declared in LINEAR and LOGIC section. Note that the master file *production.hys* has its own inputs and outputs and these are assigned to subsystems via “dot” syntax. Furthermore, we can access the state variables of single subsystems and do additional operations with them (e.g. adding constraints as given in MUST section of *production.hys* file).

After all the involved sub-connections in the master file are declared, one can proceed with compilation of the master file

```matlab
>> hysdel3('production')
Creating instance "tank1" of "storage_tank"...
Creating instance "tank2" of "storage_tank"...
Creating instance "belt" of "conveyor_belt"...
Creating instance "packer" of "packaging"...
```

and HYSDEL 3.0 generates an m-file equivalent of the input file (here *production.m*). The generated m-file is a YALMIP code, written as a function which accepts a structure of particular values for given symbolic parameters and outputs the MLD form. Since we have declared symbolic variable *diameter* in the slave file *storage_tank.hys*, it is necessary to assign a particular value to this variable before calling the YALMIP code. This is done via “dot” syntax, referring to particular instances of overall master file, i.e.

```matlab
>> par.tank1.diameter = 1;
>> par.tank2.diameter = 2;
```

Secondly, we can call the function with the parameter *par*

```matlab
>> production(par)
```

and it returns the MLD representation for a given production system depicted in Fig. 5.2.

The procedure for generating the MLD form of the master file can be done simple on a graphical level as long the source master file *production.hys* is available. For this purpose, we copy the standard HYSDEL block from HYSDEL 3.0 Simulink library to a new scheme and fill all the required fields as shown in Fig. 5.4. After confirming the OK option, HYSDEL automatically compiles the source file and generates a subsystem with corresponding input/output ports. Consequently, we can add other blocks to the scheme and the result might look as given in Fig. 5.4. By pressing START button in Simulink, the simulation of MLD system should output the number of packages generated for given input raw flow, which is illustrated in Fig. 5.5.

5.5.3 Automatic generation of master files

HYSDEL 3.0 offers a routine for automatic generation of master files. This feature exploits the graphical way of creating subsystems, as given in Simulink. The subsystem can be generated in Simulink by selecting multiple “HYSDEL Model” blocks and selecting the
option “Edit - Create Subsystems” in the Simulink scheme menu or by using the shortcut “CTRL+G”.

Suppose that we want to create a master file for a subsystem which contains two tanks without interaction. Assume that the dynamics of one tank can be described by the following hys-file

```plaintext
SYSTEM single_tank {
    INTERFACE {
        STATE { REAL x [0, 1]; }
        INPUT { REAL inflow [0, 0.5]; }
        OUTPUT { REAL outflow; }
        PARAMETER { REAL k = 0.5; }
    }
    IMPLEMENTATION {
        CONTINUOUS {
            x = inflow - k*x + x;
        }
    }
}
```

Figure 5.4: A simple example of graphical modeling of a production system.

Figure 5.5: Output is the number of packages produces per time.
which contains one input and output of class REAL. Firstly, we need to copy the “HYSDEL Model” block from the HYSDEL 3.0 library to a new Simulink scheme and to create two blocks for each tank. Secondly, we connect these blocks using arrows which represent the data flow, as shown in Fig. 5.6. Afterward we create a subsystem containing both blocks with tanks and the result might look as in Fig. 5.7. The master file for this subsystem can be obtained using the command

```matlab
>> h3_sim2hys('untitled/two_tanks')
```

where the argument of the function `h3_sim2hys` is a path to subsystem. In this particular example this path is given by the name of the current Simulink scheme followed by a backslash and the name of the subsystem block. This is the standard path used in MATLAB to refer for any Simulink block and the number of backslashes in the path denotes the hierarchy level. Examples of the path can be obtained by selecting the desired Simulink block and using one the following MATLAB commands

```matlab
>> path1 = gcs  % get name of the current Simulink system
>> path2 = gcb  % get name of the current Simulink block
```

By using `h3_sim2hys` command, HYSDEL 3.0 detects names of the blocks in the subsystem, names of the subsystems and names of the .hys-files which HYSDEL blocks refer to. Depending on the structure of the subsystems, the MODULE section in the master file is created as given by hierarchy of the subsystems. For this example, the master file has the following form

```matlab
SYSTEM two_tanks {
/* Automatically generated master file for HYSDEL3 */
/* Created at: 02-Jun-2008. */
INTERFACE {
    INPUT {
        REAL inflow;
    }
    OUTPUT {
        REAL outflow;
    }
    MODULE {
        single_tank T1, T2;
    }
}
IMPLEMENTATION {
    LINEAR {
        T2.inflow = T1.outflow;
        T1.inflow = inflow;
    }
    OUTPUT {
```
where names of the “HYSDEL Model” blocks are parsed to MODULE section and intercon-
nections are parsed into LOGIC section. The name of the master file is given by the name of
subsystem, i.e. two_tanks.hys and this file is created in the current directory. If the parsed
subsystem contains more subsystems, the h3_sim2hys creates so many master files, as it is
given by the hierarchy of subsystems.

Figure 5.6: Two tanks without interactions.

Figure 5.7: A subsystem containing two tanks.

5.6 EXAMPLES

5.6.1 Simple code

Example 37 Consider a static system with one binary input and the output is a negation of input

SYSTEM neg_single {

outflow = T2.outflow;
}
}
HYSDEL 3.0

Example 38 Consider a static system where the output is two-times input

SYSTEM times2 {

/* output is negation of input */

INTERFACE {
 INPUT {BOOL u; }
 OUTPUT {BOOL y; }
}
IMPLEMENTATION {
 OUTPUT { y = ~u; }
}
}

Example 39 Consider a dynamic system with one state variable \(x\) and one binary output \(y\). The output variable is true if \(x \geq 0\), otherwise it is negative.

SYSTEM ad_simple {

/* output is true, if state is greater than zero */

INTERFACE {
 STATE {REAL x [-10, 10]; }
 OUTPUT {BOOL y; }
}
IMPLEMENTATION {
 AUX { BOOL d; }
 AD { d = x >= 0; }
 CONTINUOUS { x = 0.5*x; }
 OUTPUT { y = d; }
}
}

We can verify the evolution using the h3_mldsim command. For instance, for initial state \(x_0 = 1\)

\[[x,y] = \text{h3_mldsim}(S,1,[]) \]

MATLAB returns \(x = 0.5\) and \(y = 1\). Otherwise, e.g.

\[[x,y] = \text{h3_mldsim}(S,-1,[]) \]

we get \(x = -0.5\) and \(y = 0\).

Example 40 Consider a dynamic system with one state variable \(x\), one input \(u\) and one output \(y\). The output from this system is two times input \(y = 2u\) if \(x > 0\), otherwise it gives \(y = u\).
Using the h3_mldsim command we can simulate the evolution, i.e. for \(x_0 = 1 \) and \(u = 1 \)

\[
\begin{bmatrix}
 x_1 \ \\
 x_2 \ \\
 x_3
\end{bmatrix}
\begin{bmatrix}
 1 & 0 & 1 \\
 0.5 & -1 & 0 \\
 -0.2 & -0.6 & 0
\end{bmatrix}
\begin{bmatrix}
 x_1(k) \\
 x_2(k) \\
 x_3(k)
\end{bmatrix}
+ \begin{bmatrix}
 1 & 0 & 1 \\
 -2 & 0.5 & 0.3 \\
 -1 & -1 & -1
\end{bmatrix}
\begin{bmatrix}
 u_1(k) \\
 u_2(k)
\end{bmatrix}
\]

\[
y_r(k) = \begin{bmatrix}
 x_1(k) \\
 x_2(k) \\
 x_3(k)
\end{bmatrix}
\]

subject to

\[
x_r(k) \in \begin{cases}
 \{ -2 \leq x_1(k) \leq 2 \} \\
 \{ 1 \leq x_2(k) \leq 3 \} \\
 \{ 0 \leq x_3(k) \leq 5 \}
\end{cases}
, \quad u_r(k) \in \begin{cases}
 \{ -1 \leq u_1(k) \leq 1 \} \\
 \{ -1 \leq u_2(k) \leq 1 \}
\end{cases}
\]

One may declare the variables in the HYSDEL file in the following way

```
SYSTEM linear_system {

  INTERFACE {
    INPUT {
      REAL ur(2) [-1, 1; -1, 1];
    }
    STATE {
      REAL xr(3) [-2, 2; 1, 3; 0, 5];
    }
    OUTPUT {
      REAL yr;
    }
  }
  PARAMETER {
```

5.6.2 Vectorized code

Example 41 Consider a linear system which contains 2 inputs, 3 states and 1 output with bounded variables

\[
\begin{bmatrix}
x_1(k+1) \\
x_2(k+1) \\
x_3(k+1)
\end{bmatrix} =
\begin{bmatrix}
 1 & 0 & 1 \\
 0.5 & -1 & 0 \\
 -0.2 & -0.6 & 0
\end{bmatrix}
\begin{bmatrix}
x_1(k) \\
x_2(k) \\
x_3(k)
\end{bmatrix}
+ \begin{bmatrix}
 1 & 0 & 1 \\
 -2 & 0.5 & 0.3 \\
 -1 & -1 & -1
\end{bmatrix}
\begin{bmatrix}
u_1(k) \\
u_2(k)
\end{bmatrix}
\]

\[
y_r(k) = \begin{bmatrix}
x_1(k) \\
x_2(k) \\
x_3(k)
\end{bmatrix}
\]

subject to

\[
x_r(k) \in \begin{cases}
 \{ -2 \leq x_1(k) \leq 2 \} \\
 \{ 1 \leq x_2(k) \leq 3 \} \\
 \{ 0 \leq x_3(k) \leq 5 \}
\end{cases}
, \quad u_r(k) \in \begin{cases}
 \{ -1 \leq u_1(k) \leq 1 \} \\
 \{ -1 \leq u_2(k) \leq 1 \}
\end{cases}
\]

One may declare the variables in the HYSDEL file in the following way
REAL A = [1, 0, 1; 0.5, -1, 0; -0.2, -0.6, 0];
REAL B = [1, 0; -2, 0.5; 0.3, -1];
REAL C = [1, 0, 0];
}
IMPLEMENTATION {
CONTINUOUS {
xr = A*xr + B*ur;
}
OUTPUT {
yr = C*xr;
}
}

Example 42 Consider HYSDEL 3.0 code for a general linear systems

\[x(k + 1) = Ax(k) + Bu(k) \]

where \(x \in \mathbb{R}^n \), \(u \in \mathbb{R}^m \), \(y \in \mathbb{R}^p \). In this case it is easier to keep all parameters symbolic and specify it later. A HYSDEL 3.0 code may look as follows

```
SYSTEM ltiABCmnp {
/* all parameters are kept as symbolic */

INTERFACE {
  INPUT { REAL u(m) [-5, 5]; }
  STATE { REAL x(n) [-5, 5]; }
  OUTPUT { REAL y(p); }
  PARAMETER { REAL A,B,C,m,n,p; }
}

IMPLEMENTATION {
  CONTINUOUS { x = A*x + B*u; }
  OUTPUT { y = C*x; }
}
}
```

Example 43 Consider a PWA system as given in [2], which contains one input, two states, two outputs and two linear dynamics defined over two partitions

\[
x(k + 1) = \begin{cases} A_1 x(k) + B_1 u(k) & \text{if } x_1(k) > 0 \\
A_2 x(k) + B_2 u(k) & \text{if } x_1(k) < 0
\end{cases}
\]

The HYSDEL 3.0 code can be written as follows:

```
SYSTEM pwa_sincos {
  INTERFACE {
    PARAMETER {
      REAL A1 = [0.4, 0.6928; -0.6928, 0.4];
      REAL A2 = [0.4, -0.6928; 0.6928, 0.4];
      REAL B = [0; 1];
    }
    INPUT { REAL u [-1, 1]; }
    STATE { REAL x(2) [-10, 10]; }
  }
```

48
OUTPUT { REAL y(2); }
}
IMPLEMENTATION {
AUX { REAL z(2); }
DA { z = {IF x(1)<0 THEN A1*x+B*u ELSE A2*x+B*u}; }
CONTINUOUS { x = z; }
OUTPUT { y = x; }
}

5.6.3 Advanced code

Example 44 Consider that we want to design a predictive controller for a simple linear system. Next example shows how it is possible using various enhancements in HYSDEL 3.0 syntax.

SYSTEM mpc_linear {
/* MPC for the linear double integrator */
INTERFACE {
STATE {
REAL X(nx, 1) [-10, 10]; /* initial state */
}
INPUT {
REAL U(nu, N) [-1, 1]; /* N-1 dimensional matrix of inputs, i.e. [U_0 U_1 .. U_(N-1)] */
}
OUTPUT {
REAL y; /* one system output - 1st element of the last predicted state */
}
PARAMETER {
REAL N = 5; /* prediction horizon */
REAL nx = 2, nu = 1; /* number of states, number of inputs */
REAL A = [1, 1; 0, 1]; /* x(k+1) = A*x + B*u */
REAL B(2,1) = [1; 0.5]; /* x(k+1) = A*x + B*u */
}
}
IMPLEMENTATION {
AUX {
REAL z(nx, N+1); /* nx-by-N dimensional matrix of predicted states */
INDEX i; /* index variable */
}
LINEAR {
z(1:nx, 1) = X(1:nx); /* z(:,1) = X_0 */
/* here we model the system evolution x(k+1) = A*x(k) + B*u(k) */
FOR (i = 1:N) {
 z(1:nx, i+1) = A*z(1:nx, i) + B*U(1:nu, i);
}
CONTINUOUS {
/* next state update corresponds to last predicted state, i.e. to X_N */
X = z(1:nx, N+1);
}
OUTPUT {
/* system output is the 1st element of the last predicted state */
}
Example 45 This example illustrates the design of an predictor used in hybrid predictive control and it features advanced HYSDEL 3.0 syntax.

SYSTEM mpc_pwa {
 /* MPC for the famous sin-cos PWA system */
 INTERFACE {
 STATE {
 REAL X(nx, 1) [-10, 10]; /* initial state, nx-by-1 vector */
 }
 INPUT {
 REAL U(nu, N) [-1, 1]; /* N-1 dimensional matrix of system inputs */
 }
 OUTPUT {
 REAL y; /* system output, identical to 1st element of last state */
 }
 PARAMETER {
 REAL N = 5; /* prediction horizon */
 REAL nx = 2, nu = 1; /* number of states, number of inputs */
 /* matrices of system dynamics */
 REAL A1 = [0.4, 0.6928; -0.6928, 0.4], A2 = [0.4, -0.6928; 0.6928, 0.4];
 REAL B(2,1) = [0; 1];
 }
 }
 IMPLEMENTATION {
 AUX {
 REAL z(nx, N+1); /* N-by-nx matrix, corresponds to X_0, X_1, ..., X_N */
 BOOL negative(N); /* N-1 dimensional vector of delta variables */
 INDEX i; /* index variable */
 }
 LINEAR {
 z(1:nx, 1) = X(1:nx); /* set z(:, 1) = X_0 */
 }
 AD {
 /* negative_1 = z(1, 1) <= 0,
 negative_2 = z(1, 2) <= 0,
 negative_3 = z(1, 3) <= 0,
 ...
 negative_(N-1) = z(1, N-1) <= 0 */
 FOR (i = 1:N) {
 negative(i) = z(1, i) <= 0;
 }
 }
 DA {
 /*
 */
 }
}
/* PWA dynamics. \(x(k+1) = A_1x(k) + Bu(k) \) if "negative(k)" is true, otherwise \(x(k+1) = A_2x(k) + Bu(k) \)

\[
\text{FOR (i = 1:N) \{ }
\quad z(1:nx, i+1) = (\text{IF negative(i) THEN } A_1z(1:nx, i) + Bu(1:nu, i) \\
\qquad \text{ELSE } A_2z(1:nx, i) + Bu(1:nu, i));
\}
\]

\text{CONTINUOUS \{ }
\quad /* next state update corresponds to last predicted state, i.e. to } X_N */ \\
\quad X = z(1:nx, N+1);
\}

\text{OUTPUT \{ }
\quad /* system output is the 1st element of the last predicted state */ \\
\quad y = X(1);
\}

\text{MUST \{ }
\quad /* all elements of every predicted state constrained between +10 and -10 */ \\
\quad z <= 10; \\
\quad z >= -10;
\}
\}
6 Control design with HYSDEL 3.0

This chapter explains various ways how to use the MLD models of HYSDEL 3.0 for designing a predictive controller. To synthesize a controller, higher level tools are adopted, such as YALMIP and MPT Toolbox.

6.1 Export of MLD system to PWA model

Once the MLD structure is available in MATLAB workspace, one can use it in several ways, including simulation of hybrid systems, or control design. An excellent tool for designing control for hybrid systems is MPT toolbox [5]. It has incorporated many functions which can even process the HYSDEL 2.0.5 source code and use it directly for control design. For further details, please consult MPT manual or MATLAB help to mpt sys function.

However, as HYSDEL 3.0 has newer syntax, the function mpt sys has to deal with extended syntax of the HYSDEL 3.0 -files. Due to this reason, another routine was implemented in HYSDEL 3.0, which processes the new MLD format (3.2) and outputs MPT sysStruct format. The principle of conversion is based on an equivalence between different forms of hybrid system [3]. One of the forms, as used in MPT Toolbox, is given by piecewise affine (PWA) system

\[x(k+1) = A_i x(k) + B_i u(k) + f_i \quad \text{if} \quad (x(k), u(k)) \in D_i \]

(6.1)

where \(A_i, B_i, f_i \) are state update matrices defined over polyhedral regions

\[D_i = \{ (x(k), u(k)) \in \mathbb{R}^{n_x+n_u} \mid H_{x,i} x(k) + H_{u,i} u(k) \leq K_i, \quad i = 1, \ldots, n_D \} \]

(6.2)

defined in \(x - u \) space. The number \(n_D \) denotes the total number of partitions. An efficient transformation from MLD description to PWA system has been shown in [1], and the algorithm is implemented in function h3_mld2pwa. The use of this function is as follows

\[\texttt{sysStruct} = \texttt{h3_mld2pwa}(S) \]

where the input argument is the HYSDEL 3.0 MLD structure and the output is the MPT sysStruct format. For help, type

\[\texttt{help mpt_sysStruct} \]

and MPT toolbox gives you options how to work with this format.

Note that h3_mld2pwa uses MPT/polytope library and for a proper use of this function, MPT toolbox has to be installed.

Example 46 Suppose that we want to obtain a PWA representation of a simple hybrid model of car. The dynamics of a car is given by three states position, velocity, turbocount and the switching between two hybrid modes (normal mode/turbo mode) is given by an external binary input turbo. The source file might be given as follows:
SYSTEM turbo_car {
 INTERFACE {
 STATE {
 REAL position [-50, 50];
 REAL velocity [-10, 10];
 REAL turbocount [-10, 10];
 }
 INPUT {
 REAL acc [-1, 1];
 BOOL turbo;
 }
 OUTPUT {
 REAL y;
 }
 }
 IMPLEMENTATION {
 AUX {
 REAL aux_acc;
 }
 DA {
 aux_acc = {IF turbo THEN 2*acc ELSE acc};
 }
 CONTINUOUS {
 position = position + velocity + aux_acc;
 velocity = velocity + 0.5*aux_acc;
 turbocount = turbocount - (REAL turbo);
 }
 OUTPUT {
 y = position;
 }
 }
}

In MPT Toolbox, it is possible to get a PWA representation simply using

>> mpt_sys('turbo_car')

command. Alternatively, we can use the HYSDEL 3.0 to get the MLD representation first, i.e.

>> hysdel3('turbo_car')
>> S = turbo_car

Secondly, the PWA form can be obtained by

>> sysStruct = h3_mld2pwa(S)

which can be used for control design in MPT Toolbox. For instance, to obtain an explicit controller which drives the car to a position 30, can be achieved by defining a problem structure probStruct (see MATLAB help)

>> probStruct.N = 3;
>> probStruct.Q = [1 0.5 0];
>> probStruct.R = [1 0];
>> probStruct.norm = 1;
>> probStruct.subopt_lev = 0;
>> probStruct.xref = [30; 0; 0];
and invoking the main routine

```matlab
>> ctrl = mpt_control(sysStruct, probStruct);
```

Resulting controller is stored in a MPT-structure and to simulate a closed loop we need to use other functions of MPT Toolbox, such as

```matlab
>> mpt_plotTimeTrajectory(ctrl,[0;0;0],20)
```

which returns a plot shown in Fig. 6.1.

Figure 6.1: A closed loop simulation for a turbo_car model as returned by MPT Toolbox.
Bibliography

