Virtual Inertia Emulation and Placement in Power Grids

Séminaire d’Automatique du Plateau de Saclay
Laboratoire de Signaux et Systèmes du Supelec

Florian Dörfler

At the beginning of power systems was...

At the beginning was the **synchronous machine**:

\[M \frac{d}{dt} \omega(t) = P_{\text{generation}}(t) - P_{\text{demand}}(t) \]

change of kinetic energy = instantaneous power balance

Fact: the AC grid & all of power system operation has been designed around synchronous machines.

Operation centered around bulk synchronous generation

Distributed/non-rotational/renewable generation on the rise

Source: W. Sattinger, Swissgrid

Source: Renewables 2014 Global Status Report
A few (of many) game changers . . .

synchronous generator new workhorse scaling

location & distributed implementation

Almost all operational problems can principally be resolved . . . but one (?)

Low-inertia stability: # 1 problem of distributed generation

frequency violations in Nordic grid (source: ENTSO-E)
same in Switzerland (source: Swissgrid)

inertia is shrinking, time-varying, & localized, . . . & increasing disturbances

Solutions in sight: none really . . . other than emulating virtual inertia through fly-wheels, batteries, super caps, HVDC, demand-response, . . .

Fundamental challenge: operation of low-inertia systems

We slowly lose our giant electromechanical low-pass filter:

$$M \frac{d}{dt} \omega(t) = P_{\text{generation}}(t) - P_{\text{demand}}(t)$$

cchange of kinetic energy = instantaneous power balance

Virtual inertia emulation

devices commercially available, required by grid-codes or incentivized through markets

⇒ plug-&-play (decentralized & passive), grid-friendly, user-friendly, . . .
⇒ today: where to do it? how to do it properly?
Inertia emulation & virtual synchronous machines

1. naive D-control on $\omega(t)$: $M \frac{d\omega(t)}{dt} = P_{\text{generation}}(t) - P_{\text{demand}}(t)$

2. more sophisticated emulation of virtual synchronous machine

- everything in between ... and much more ...
 - by measuring AC current/voltage/power/frequency
 - software model of virtual machine provides converter setpoints
 - actuation via modulation (switching) or DC injection (batteries etc.)
Challenges in real-world converter implementations

1. delays in measurement acquisition, signal processing, & actuation
2. accuracy in AC measurements (averaged over ≈ 5 cycles)
3. constraints on currents, voltages, power, etc.
4. guarantees on stability and robustness

today: use DC measurement, exploit analog storage, & passive control

standard power electronics control would continue by
1. constructing voltage/current/power references (e.g., droop, synchronous machine emulation, etc.)
2. tracking these references at the converter terminals typically by means of cascaded PI controllers

let’s do **something different** (smarter?) today . . .
Model matching (≠ emulation) as inner control loop

DC cap & AC filter equations:
\[C_{dc} v_{dc} = -G_{dc} v_{dc} + i_{dc} - \frac{1}{2} m^T i_{\alpha\beta} \]
\[C v_{\alpha\beta} = -i_{\text{load}} + i_{\alpha\beta} \]
\[L i_{\alpha\beta} = -R i_{\alpha\beta} + \frac{1}{2} m v_{dc} - v_{\alpha\beta} \]

Matching control: \(\dot{\theta} = \eta \cdot v_{dc}, \quad m = \mu \cdot \begin{bmatrix} -\sin(\theta) \\ \cos(\theta) \end{bmatrix} \) with \(\eta, \mu > 0 \)

Pros: is balanced, uses natural storage, & based on DC measurement

Virtual machine with \(M = \frac{C_{dc}}{\eta^2}, \quad D = \frac{G_{dc}}{\eta^2}, \quad \tau_m = \frac{i_{\text{dc}}}{\eta}, \quad i_f = \frac{\mu}{\eta L_m} \)

Base for outer controls via \(i_{dc} & \mu \), e.g., virtual torque, PSS, & inertia

Some properties & different viewpoints

- **Quadratic curves** for stationary \(P \) vs. \((|V|, \omega) \)
 \[P \leq P_{\text{max}} = \frac{i_{dc}^2}{4 G_{dc}} \]
- Reactive power not directly affected
- \((P, \omega) \)-droop \(\approx \frac{1}{\eta} \)
- \((P, |V|) \)-droop \(\approx \frac{1}{\mu} \)
- **Reformulation as virtual & adaptive oscillator**
- **Remains passive**: \((i_{dc}, i_{\text{load}}) \rightarrow (v_{dc}, v_{\alpha\beta}) \)

Optimal placement of virtual inertia
Linearized & Kron-reduced swing equation model

\[m_i \ddot{\theta}_i + d_i \dot{\theta}_i = p_{in,i} - p_{e,i} \]

\(p_{e,i} \approx \sum_{j \in N} b_{ij} (\theta_i - \theta_j) \)

Generator swing equations

State space representation:

\[
\begin{bmatrix}
\dot{\theta} \\
\dot{\omega}
\end{bmatrix} =
\begin{bmatrix}
0 & I \\
-M^{-1}L - M^{-1}D & A
\end{bmatrix}
\begin{bmatrix}
\theta \\
\omega
\end{bmatrix} +
\begin{bmatrix}
0 \\
M^{-1}
\end{bmatrix}
\begin{bmatrix}
T^{1/2} \eta
\end{bmatrix}
\]

where \(M = \text{diag}(m_i) \), \(D = \text{diag}(d_i) \), \(T = \text{diag}(t_i) \), & \(L = L^T \) (Laplacian)

Coherency performance metric & \(\mathcal{H}_2 \) norm

Energy expended by the system to return to synchronous operation:

\[
\int_0^\infty \sum_{(i,j) \in \mathcal{E}} e^{a_{ij}(\theta_i(t) - \theta_j(t))^2} + \sum_{i=1}^n s_i \omega_i^2(t) \, dt
\]

\(\mathcal{H}_2 \) norm interpretation:

- Associated performance output:
 \[
 y = \begin{bmatrix}
 Q_1^{1/2} & 0 \\
 0 & Q_2^{1/2}
 \end{bmatrix}
 \begin{bmatrix}
 \theta \\
 \omega
 \end{bmatrix}
 \]

- Impulses (faults) \(\rightarrow \) output energy \(\int_0^\infty y(t)^T y(t) \, dt \)

- White noise (renewables) \(\rightarrow \) output variance \(\lim_{t \to \infty} \mathbb{E} (y(t)^T y(t)) \)

Algebraic characterization of the \(\mathcal{H}_2 \) norm

Lemma: via observability Gramian

\[
\|G\|_2^2 = \text{Trace}(B^T P B)
\]

where \(P \) is the observability Gramian \(P = \int_0^\infty e^{A^T t} C^T C e^A t \, dt \)

- \(P \) solves a Lyapunov equation: \(PA + A^T P + Q = 0 \)

- \(A \) has a zero eigenvalue \(\rightarrow \) restricts choice of \(Q \)

\[
\begin{bmatrix}
Q_1^{1/2} & 0 \\
0 & Q_2^{1/2}
\end{bmatrix}
\begin{bmatrix}
\theta \\
\omega
\end{bmatrix} = 0
\]

- \(P \) is unique for \(P [\mathbb{1} 0] = [0 0] \)
Problem formulation

\[\minimize_{P, m_i} \| G \|_2^2 = \text{Trace}(B^T PB) \rightarrow \text{performance metric} \]

subject to \[\sum_{i=1}^n m_i \leq m_{bdg} \rightarrow \text{budget constraint} \]

\[m_i \leq m_i \leq m_i, \quad i \in \{1, \ldots, n\} \rightarrow \text{capacity constraint} \]

\[PA + A^T P + Q = 0 \rightarrow \text{observability Gramian} \]

\[P [1 \ 0] = [0 \ 0] \rightarrow \text{uniqueness} \]

Insights

- \(m \) appears as \(m^{-1} \) in system matrices \(A, B \)
- product of \(B(m) \) & \(P \) in the objective
- product of \(A(m) \) & \(P \) in the constraint

\[\Rightarrow \text{large-scale & non-convex} \]

Closed-form results for cost of primary control

\(P/\dot{\theta} \) primary droop control

\[(\omega_i - \omega^*) \propto (P_i^* - P_i(\theta)) \]

\[D_i \dot{\theta}_i = P_i^* - P_i(\theta) \]

Primary control effort \(\rightarrow \) accounted for by integral quadratic cost

\[\int_0^\infty \dot{\theta}(t)^T D \dot{\theta}(t) \, dt \]

which is the \(\mathcal{H}_2 \) performance for the penalties \(Q_1^{1/2} = 0 \) and \(Q_2^{1/2} = D \)

Building the intuition: results for two-area networks

Fundamental learnings

- explicit closed-form solution is rational function
- sufficiently uniform \((t/d)_i \) \(\rightarrow \) strongly convex & fairly flat cost
- non trivial in the presence of capacity constraints

Primary Control \(\ldots \) cont’d

Theorem: the primary control effort optimization reads equivalently as

\[\minimize_{m_i} \sum_{i=1}^n t_i/m_i \]

subject to \[\sum_{i=1}^n m_i \leq m_{bdg} \]

\[m_i \leq m_i \leq m_i, \quad i \in \{1, \ldots, n\} \]

Key take-aways:

- optimal solution independent of network topology
- allocation \(\propto \sqrt{t_i} \) or \(m_i = \min\{m_{bdg}, m_i\} \)

Location & strength of disturbance are crucial solution ingredients
Taylor & power series expansions

Key idea: expand the performance metric as a power series in \(m \)

\[
\|G\|_2^2 = \text{Trace}(B(m)^T P(m) B(m))
\]

Motivation: scalar series expansion at \(m_i \) in direction \(\mu_i \):

\[
\frac{1}{(m_i + \delta \mu_i)} = \frac{1}{m_i} - \frac{\delta \mu_i}{m_i^2} + O(\delta^2)
\]

Expand system matrices as **Taylor series** in direction \(\mu \):

\[
A(m + \delta \mu) = A(0)_{(m,\mu)} + A(1)_{(m,\mu)} \delta + O(\delta^2)
\]

\[
B(m + \delta \mu) = B(0)_{(m,\mu)} + B(1)_{(m,\mu)} \delta + O(\delta^2)
\]

Expand the observability Gramian as a **power series** in direction \(\mu \):

\[
P(m + \delta \mu) = P(0)_{(m,\mu)} + P(1)_{(m,\mu)} \delta + O(\delta^2)
\]

Explicit gradient computation

Expansion of system matrices & Gramian \(\Rightarrow \) **match coefficients** ...

Formula for gradient at \(m \) in direction \(\mu \)

- nominal Lyapunov equation for \(O(\delta^0) \):
 \[
P(0) = \text{Lyap}(A(0),Q)
 \]

- perturbed Lyapunov equation for \(O(\delta^1) \) terms:
 \[
P(1) = \text{Lyap}(A(0),P(0)A(1) + A(1)^T P(0))
 \]

- expand objective in direction \(\mu \):
 \[
 \|G\|_2^2 = \text{Trace}(B(m)^T P(m) B(m)) = \text{Trace}(... + \delta(...)) + O(\delta^2)
 \]

- gradient: \(\text{Trace}(2 \ast B(1)^T P(0) B(0) + B(0)^T P(1) B(0)) \)

\(\Rightarrow \) use favorite method for reduced optimization problem

results
Modified Kundur case study: 3 regions & 12 buses
transformer reactance 0.15 p.u., line impedance (0.0001+0.001i) p.u./km

Heuristics outperformed by H_2 - optimal allocation

Scenario: disturbance at #4
- locally optimal solution outperforms heuristic max/uniform allocation
- optimal allocation ≈ matches disturbance
- inertia emulation at all undisturbed nodes is actually detrimental
⇒ location of disturbance & inertia emulation matters

Eye candy: time-domain plots of post fault behavior

Take-home messages:
- best oscillation performance
- smallest peak frequency at #4
- undisturbed sites are irrelevant
- minimal control effort $m_i \cdot \dot{\theta}_i$

conclusions
Conclusions on virtual inertia emulation

Where to do it?
1. H_2-optimal (non-convex) allocation
2. closed-form results for cost of primary control
3. numerical approach via gradient computation

How to do it?
1. down-sides of naive inertia emulation
2. novel machine matching control

What else to do? Inertia emulation is . . .

- decentralized, plug-and-play (passive), grid-friendly, user-friendly, . . .
- suboptimal, wasteful in control effort, & need for new actuators

Recall: operation centered around (virtual) sync generators

A control perspective of power system operation

Conventional strategy: emulate generator physics & control

\[
M \dot{\omega}(t) = P_{\text{mech}} - D \omega(t) - \int_0^t \omega(\tau) \, d\tau - P_{\text{elec}}
\]

(provisional inertia) (tertiary control) (primary control) (secondary control)

Essentially all PID + setpoint control (simple, robust, & scalable)

\[
M \dot{\omega}(t) = P - D \omega(t) - \int_0^t \omega(\tau) \, d\tau - P_{\text{elec}}
\]

D (set-point) P I

Control engineers should be able to do better . . .

This “what else?” has been broadly recognized
by TSOs, device manufacturers, academia, etc.

Massive InteGRATion of power Electronic devices

“The question that has to be examined is: how much power
electronics can the grid cope
with?” (European Commission)

current controls what else?

all options are on the table and keep us busy . . .
Spectral perspective on different inertia allocations

Cone, Original, Optimal, and Uniform allocations

\[\begin{align*}
\text{Cone}, & \quad \text{Original}, \quad \text{Optimal}, \quad \text{and Uniform allocations} \\
\end{align*} \]

The planning problem

sparse allocation of limited resources

\[\begin{align*}
\ell_1\text{-regularized inertia allocation (promoting a sparse solution):} \\
\text{minimize} & \quad J_{\gamma}(m, P) = \|G\|_2^2 + \gamma \|m - \bar{m}\|_1 \\
\text{subject to} & \quad \sum_{i=1}^{n} m_i \leq m_{\text{bdg}} \\
& \quad m_i \leq m_i \leq \bar{m}_i \quad i \in \{1, \ldots, n\} \\
& \quad PA + A^TP + Q = 0 \\
& \quad P[1 0] = [0 0] \\
\end{align*} \]

where $\gamma \geq 0$ trades off sparsity penalty and the original objective

Highlights:

- $m = \bar{m} \rightarrow$ best damping asymptote & best damping ratio
- Spectrum holds only partial information !!
Relative performance loss (%) as a function of γ

0% \rightarrow optimal allocation, 100% \rightarrow no additional allocation

![Cardinality vs Relative Performance Loss](image)

- uniform disturbance $\Rightarrow \exists \gamma$ 1.3% loss $\equiv (9 \rightarrow 7)$
- localized disturbance $\Rightarrow (2 \rightarrow 1)$ without affecting performance

Uniform disturbance to damping ratio

Power sharing $\rightarrow d \propto P^*$, assuming $t \propto$ source rating P^*

Theorem: for $t_i/d_i = t_j/d_j$ the allocation problem reads equivalently as

$$\begin{align*}
\text{minimize} & \quad \sum_{i=1}^{n} \frac{s_i}{m_i} \\
\text{subject to} & \quad \sum_{i=1}^{n} m_i \leq m_{bgj}, \quad m_i \leq m_i, \quad i \in \{1, \ldots, n\}
\end{align*}$$

Key takeaways:
- optimal solution independent of network topology
- allocation $\propto \sqrt{s_i}$ or $m_i = \min\{m_{bgj}, m_i\}$

What if freq. penalty \propto inertia? \rightarrow norm independent of inertia

Taylor & power series expansions

Key idea: expand the performance metric as a power series in m

$$\|G\|^2 = \text{Trace}(B(m)^T P(m) B(m))$$

Motivation: scalar series expansion at m_i in direction μ_i:

$$\frac{1}{(m_i + \delta\mu)} = \frac{1}{m_i} - \frac{\delta\mu}{m_i^2} + O(\delta^2)$$

Expand system matrices in direction μ, where $\Phi = \text{diag}(\mu)$:

$$\begin{align*}
A_{(m,\mu)}^{(0)} &= \begin{bmatrix} 0 & I \\ -M^{-1}L & -M^{-1}D \end{bmatrix}, & A_{(m,\mu)}^{(1)} &= \begin{bmatrix} 0 & 0 \\ \Phi M^{-2}L & \Phi M^{-2}D \end{bmatrix} \\
B_{(m,\mu)}^{(0)} &= \begin{bmatrix} 0 \\ M^{-1}T^{1/2} \end{bmatrix}, & B_{(m,\mu)}^{(1)} &= \begin{bmatrix} 0 \\ -\Phi M^{-2}T^{1/2} \end{bmatrix}
\end{align*}$$

Expand the observability Gramian as a power series in direction μ.

$$P(m) = P(m + \delta\mu) = P_{(m,\mu)}^{(0)} + P_{(m,\mu)}^{(1)} \delta + O(\delta^2)$$

Formula for gradient in direction μ

- nominal Lyapunov equation for $O(\delta^2)$: $P^{(0)} = \text{Lyap}(A^{(0)}, Q)$
- perturbed Lyapunov equation for $O(\delta^2)$ terms:
 $$P^{(1)} = \text{Lyap}(A^{(0)}, P^{(0)} A^{(1)} + A^{(1)}^T P^{(0)})$$
- expand objective in direction μ:
 $$\|G\|^2 = \text{Trace}(B(m)^T P(m) B(m)) = \text{Trace}(\ldots + \delta(\ldots)) + O(\delta^2)$$
- gradient: $\text{Trace}(2 \ast B^{(1)^T} P^{(0)} B^{(0)} + B^{(0)^T} P^{(1)} B^{(0)})$
Gradient computation

Algorithm: Gradient computation & perturbation analysis

Input → current values of the decision variables m_i

Output → numerically evaluated gradient ∇f of the cost function

- Evaluate the system matrices $A^{(0)}, B^{(0)}$ based on current inertia
- Solve for $P^{(0)} = \text{Lyap}(A^{(0)}, Q)$ using a Lyapunov routine
- For each node- obtain the perturbed system matrices $A^{(1)}, B^{(1)}$
- Compute $P^{(1)} = \text{Lyap}(A^{(0)}, P^{(0)}A^{(1)} + A^{(1)}^TP^{(0)})$
- Gradient $\Rightarrow \text{Trace}(2B^{(1)^TP^{(0)}B^{(0)} + B^{(0)^TP^{(1)}B^{(0)}}})$

Heuristics outperformed also for uniform disturbance

Scenario: uniform disturbance

Heuristics for placement:
- **max** allocation in case of capacity constraints
- **uniform** allocation in case of budget constraint

Results & insights:
- locally optimal solution **outperforms** heuristics
- optimal solution $\neq \text{max}$ inertia at each bus