MIMO analysis: loop-at-a-time

Plant:

\[P(s) = \frac{1}{s^2 + \alpha^2} \begin{bmatrix} s - \alpha^2 & \alpha(s + 1) \\ -\alpha(s + 1) & s - \alpha^2 \end{bmatrix} \]. (take \(\alpha = 10 \) in the following numerical analysis)

Controller:

\[K_1 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \quad , \quad K_2 = \frac{1}{1 + \alpha^2} \begin{bmatrix} 1 & -\alpha \\ \alpha & 1 \end{bmatrix} \]
MIMO analysis: loop-at-a-time

Closed-loop transfer function:

\[
\begin{bmatrix}
y_1 \\
y_2
\end{bmatrix}
= P(s) \left(I + P(s)K_1(s) \right)^{-1} K_2(s) \begin{bmatrix}
r_1 \\
r_2
\end{bmatrix}
\]

\[
= \frac{1}{s + 1} \begin{bmatrix}
1 & 0 \\
0 & 1
\end{bmatrix} \begin{bmatrix}
r_1 \\
r_2
\end{bmatrix}.
\]
MIMO analysis: loop-at-a-time

Loop transfer function: \[e_1 = \frac{1}{s} u_1. \]
MIMO analysis

More general input perturbation analysis:

Perturbations at the plant input (actuator uncertainty)

\[u_1 = (1 + \delta_1) e_1. \]
\[u_2 = (1 + \delta_2) e_2 \]

\[\Delta = \begin{bmatrix} \delta_1 & 0 \\ 0 & \delta_2 \end{bmatrix}, \]
MIMO analysis

\[
\Delta = \begin{bmatrix} \delta_1 & 0 \\ 0 & \delta_2 \end{bmatrix},
\]

Take \(\|\Delta\| \leq 0.05 \) \hspace{1cm} (5\% \text{ uncertainty in each actuator})

Step response for \(y_1 \) channel

\[
\Delta = \begin{bmatrix} 0.05 & 0 \\ 0 & -0.05 \end{bmatrix},
\]

\(y_1 \) \hspace{1cm} \(y_2 \)

\(\delta_1 = 0.05, \delta_2 = -0.05 \)
MIMO analysis

The closed-loop system becomes unstable with \(\Delta = \begin{bmatrix} 0.11 & 0 \\ 0 & -0.11 \end{bmatrix} \),

Closed-loop characteristic polynomial:

\[
s^2 + (2 + \delta_1 + \delta_2) s + [1 + \delta_1 + \delta_2 + (\alpha^2 + 1)\delta_1\delta_2] = 0.
\]

If \(\delta_2 = 0 \) the smallest destabilizing perturbation is \(\delta_1 = -1 \)

Choose instead: \(\delta_1 = \frac{1}{\sqrt{\alpha^2 + 1}} \approx 0.1 \) and \(\delta_2 = -\delta_1 \)
MIMO analysis

Stability regions:

- **UNSTABLE**
- **STABLE**

\(\delta_1 \quad \delta_2 \)

\(-2 \quad -1 \quad 0 \quad 1 \quad 2 \)

\(-2 \quad -1.5 \quad -1 \quad -0.5 \quad 0 \)

\(-1.5 \quad -1 \quad -0.5 \quad 0 \quad 0.5 \quad 1 \quad 1.5 \quad 2 \)
Singular value analysis

\[\sigma(L) \leq 1 \text{ for all } \omega. \]
Performance poor in low gain direction.

\[\kappa(L) \gg 1. \]
Very sensitive to errors in direction.
Motivating robustness example no. 2: Distillation Process [3.7.2]

Idealized dynamic model of a distillation column,

\[G(s) = \frac{1}{75s + 1} \begin{bmatrix} 87.8 & -86.4 \\ 108.2 & -109.6 \end{bmatrix} \] \quad (6.49)

(time is in minutes).

Figure 62: Response with decoupling controller to filtered reference input \(r_1 = 1/(5s + 1) \). The perturbed plant has 20% gain uncertainty as given by (6.52).

Inverse-based controller or equivalently steady-state decoupler with a PI controller \((k_1 = 0.7)\)

\[K_{\text{inv}}(s) = \frac{k_1}{s} G^{-1}(s) = \frac{k_1 (1 + 75s)}{s} \begin{bmatrix} 0.3994 & -0.3149 \\ 0.3943 & -0.3200 \end{bmatrix} \]
Nominal performance (NP).

\[K_{\text{inv}}(s) = \frac{k_1}{s} G^{-1}(s) = \frac{k_1(1 + 75s)}{s} \begin{bmatrix} 0.3994 & -0.3149 \\ 0.3943 & -0.3200 \end{bmatrix} \]

\[GK_{\text{inv}} = K_{\text{inv}}G = \frac{0.7}{s} I \]

first order response with time constant 1.43 (Fig. 62).

Nominal performance (NP) achieved with decoupling controller.
Robust stability (RS).

\[S = S_I = \frac{s}{s + 0.7}I; \quad T = T_I = \frac{1}{1.43s + 1} \] \hspace{1cm} (6.51)

In each channel: GM=∞, PM=90°.

Input gain uncertainty (6.48) with \(\epsilon_1 = 0.2 \) and \(\epsilon_2 = -0.2 \):

\[u'_1 = 1.2u_1, \quad u'_2 = 0.8u_2 \] \hspace{1cm} (6.52)

\[L'_I(s) = K_{\text{inv}}G' = K_{\text{inv}}G \begin{bmatrix} 1 + \epsilon_1 & 0 \\ 0 & 1 + \epsilon_2 \end{bmatrix} = \begin{bmatrix} 0.7 & 0 \\ \frac{s}{1 + \epsilon_1} & 1 + \epsilon_2 \end{bmatrix} \] \hspace{1cm} (6.53)

Perturbed closed-loop poles are

\[s_1 = -0.7(1 + \epsilon_1), \quad s_2 = -0.7(1 + \epsilon_2) \] \hspace{1cm} (6.54)

Closed-loop stability as long as the input gains \(1 + \epsilon_1 \) and \(1 + \epsilon_2 \) remain positive

\[\Rightarrow \text{Robust stability (RS) achieved with respect to input gain errors for the decoupling controller.} \]
Robust performance (RP).

Performance with model error poor (Fig. 62)

- SISO: NP+RS ⇒ RP (within a factor of 2)
- MIMO: NP+RS \(\not\Rightarrow\) RP
 (arbitrarily large violation)

RP is not achieved by the decoupling controller.

6.3.3 Robustness conclusions [3.7.3]

Multivariable plants can display a sensitivity to uncertainty (in this case input uncertainty) which is fundamentally different from what is possible in SISO systems.
General control problem formulation (3.8 in S&P)

Figure 63: General control configuration for the case with no model uncertainty

The overall control objective is to minimize some norm of the transfer function from w to z, for example, the \mathcal{H}_∞ norm. The controller design problem is then:

Find a controller K which based on the information in v, generates a control signal u which counteracts the influence of w on z, thereby minimizing the closed-loop norm from w to z.
Calculating the generalized plant

The routines in MATLAB for synthesizing \mathcal{H}_∞ and \mathcal{H}_2 optimal controllers assume that the problem is in the general form of Figure 63

Example: One degree-of-freedom feedback control configuration.

![Figure 64: One degree-of-freedom control configuration](image)

Figure 64: One degree-of-freedom control configuration

The overall control objective is to minimize some norm of the transfer function from w to z, for example, the \mathcal{H}_∞ norm. The controller design problem is then: Find a controller K which based on the information in v, generate a control signal u which counteracts the influence of w on z, thereby minimizing the closed-loop norm from w to z. For more details, refer to Figure 64.
Calculating the generalized plant

Equivalent representation of Figure 64 where the error signal to be minimized is $z = y - r$ and the input to the controller is $v = r - y_m$

Figure 65: General control configuration equivalent to Figure 64
Calculating the generalized plant

\[
\begin{align*}
 w &= \begin{bmatrix} w_1 \\ w_2 \\ w_3 \end{bmatrix} = \begin{bmatrix} d \\ r \\ n \end{bmatrix};
 z &= e = y - r;
 v = r - y_m = r - y - n \\
 \text{(6.55)}
\end{align*}
\]

\[
\begin{align*}
 z &= y - r = Gu + d - r = Iw_1 - Iw_2 + 0w_3 + Gu \\
 v &= r - y_m = r - Gu - d - n = \\
 &= -Iw_1 + Iw_2 - Iw_3 - Gu
\end{align*}
\]

and \(P \) which represents the transfer function matrix from \(\begin{bmatrix} w & u \end{bmatrix}^T \) to \(\begin{bmatrix} z & v \end{bmatrix}^T \) is

\[
P = \begin{bmatrix}
 I & -I & 0 & G \\
 -I & I & -I & -G
\end{bmatrix}
\]

\[
\text{(6.56)}
\]

Note that \(P \) does not contain the controller.
Alternatively, \(P \) can be obtained from Figure 65.
Calculating the generalized plant

Remark. In MATLAB we may obtain P via `simulink`, or we may use the `sysic` program in the Robust Control toolbox. The code in Table 2 generates the generalized plant P in (6.56) for Figure 64.

Table 2: Matlab program to generate P

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>% Uses the Robust Control toolbox</code></td>
<td></td>
</tr>
<tr>
<td><code>systemnames = 'G';</code></td>
<td>% G is the SISO plant.</td>
</tr>
<tr>
<td><code>inputvar = '[d(1);r(1);n(1);u(1)];'</code></td>
<td>% Consists of vectors w and u.</td>
</tr>
<tr>
<td><code>inputtoG = '[u]';</code></td>
<td></td>
</tr>
<tr>
<td><code>outputvar = '[G+d-r; r-G-d-n]';</code></td>
<td>% Consists of vectors z and v.</td>
</tr>
<tr>
<td><code>sysoutname = 'P';</code></td>
<td></td>
</tr>
<tr>
<td><code>sysic;</code></td>
<td></td>
</tr>
</tbody>
</table>
Calculating the generalized plant
Calculating the generalized plant

\[z = y - r \]

\[v = r - y \]

\[P \]

Figure 65: General control configuration equivalent to Figure 64

\[
\begin{align*}
[A, B, C, D] &= \text{linmod}('P_diagram'); \\
P &= \text{ss}(A, B, C, D); \\
P &= \text{minreal}(P);
\end{align*}
\]
Including weights

To get a meaningful controller synthesis problem, for example, in terms of the \(\mathcal{H}_\infty \) or \(\mathcal{H}_2 \) norms, we generally have to include weights \(W_z \) and \(W_w \) in the generalized plant \(P \), see Figure 66.

That is, we consider the weighted or normalized exogenous inputs \(w \), and the weighted or normalized controlled outputs \(z = W_z \tilde{z} \). The weighting matrices are usually frequency dependent and typically selected such that weighted signals \(w \) and \(z \) are of magnitude 1, that is, the norm from \(w \) to \(z \) should be less than 1.

Figure 66: General control configuration for the case with no model uncertainty
Example: Stacked S/T/KS problem.

Consider an \mathcal{H}_∞ problem where we want to bound $\bar{\sigma}(S)$ (for performance), $\bar{\sigma}(T)$ (for robustness and to avoid sensitivity to noise) and $\bar{\sigma}(KS)$ (to penalize large inputs). These requirements may be combined into a stacked \mathcal{H}_∞ problem

$$\min_{K} \|N(K)\|_{\infty}, \quad N = \begin{bmatrix} W_u KS \\ W_T T \\ W_P S \end{bmatrix}$$

where K is a stabilizing controller. In other words, we have $z = Nw$ and the objective is to minimize the \mathcal{H}_∞ norm from w to z.

(6.57)
Figure 67: Block diagram corresponding to generalized plant in (6.57)

\[z_1 = W_u u \]
\[z_2 = W_T G u \]
\[z_3 = W_P w + W_P G u \]
\[v = -w - G u \]

so the generalized plant \(P \) from \([w \quad u]^T\) to \([z \quad v]^T\) is

\[
P = \begin{bmatrix}
0 & W_u I \\
0 & W_T G \\
W_P I & W_P G \\
-I & -G
\end{bmatrix}
\] (6.58)
6.4.3 Partitioning the generalized plant P

We often partition P as

$$P = \begin{bmatrix} P_{11} & P_{12} \\ P_{21} & P_{22} \end{bmatrix}$$ \hspace{1cm} (6.59)$$

so that

$$z = P_{11}w + P_{12}u$$ \hspace{1cm} (6.60)$$
$$v = P_{21}w + P_{22}u$$ \hspace{1cm} (6.61)$$

In Example “Stacked S/T/KS problem” we get from (6.58)

$$P_{11} = \begin{bmatrix} 0 \\ W_P I \end{bmatrix}, \quad P_{12} = \begin{bmatrix} W_u I \\ W_T G \end{bmatrix}$$ \hspace{1cm} (6.62)$$

$$P_{21} = -I, \quad P_{22} = -G$$ \hspace{1cm} (6.63)$$

Note that P_{22} has dimensions compatible with the controller K in Figure 6-35.
6.4.3 Partitioning the generalized plant P

[3.8.3]

We often partition P as

$$P = \begin{bmatrix} P_{11} & P_{12} \\ P_{21} & P_{22} \end{bmatrix}$$

so that

$$z = P_{11}w + P_{12}u \quad (6.60)$$

$$v = P_{21}w + P_{22}u \quad (6.61)$$

In Example “Stacked $S/T/KS$ problem” we get from (6.58)

$$P_{11} = \begin{bmatrix} 0 \\ 0 \\ W_PI \end{bmatrix}, \quad P_{12} = \begin{bmatrix} W_uI \\ W_TG \\ W_PG \end{bmatrix} \quad (6.62)$$

$$P_{21} = -I, \quad P_{22} = -G \quad (6.63)$$

Note that P_{22} has dimensions compatible with the controller K in Figure 66
Calculating the closed-loop:

\[w \rightarrow N \rightarrow z \]

Figure 68: General block diagram for analysis with no uncertainty

For analysis of closed-loop performance we may absorb \(K \) into the interconnection structure and obtain the system \(N \) as shown in Figure 68 where

\[z = Nw \quad (6.64) \]

where \(N \) is a function of \(K \). To find \(N \), first partition the generalized plant \(P \) as given in (6.59)-(6.61), combine this with the controller equation

\[u = Kv \quad (6.65) \]

and eliminate \(u \) and \(v \) from equations (6.60), (6.61) and (6.65) to yield \(z = Nw \) where \(N \) is given by

\[N = P_{11} + P_{12}K(I - P_{22}K)^{-1}P_{21} \triangleq F_i(P,K) \quad (6.66) \]
Calculating the closed-loop:

\[N = P_{11} + P_{12}K(I - P_{22}K)^{-1}P_{21} \triangleq F_l(P, K) \]

Here \(F_l(P, K) \) denotes a lower linear fractional transformation (LFT) of \(P \) with \(K \) as the parameter. In words, \(N \) is obtained from Figure 63 by using \(K \) to close a lower feedback loop around \(P \). Since positive feedback is used in the general configuration in Figure 63 the term \((I - P_{22}K)^{-1}\) has a negative sign.
Robustness: a more general control structure

The general control configuration in Figure 63 may be extended to include model uncertainty. Here the matrix Δ is a *block-diagonal* matrix that includes all possible perturbations (representing uncertainty) to the system. It is normalized such that $\|\Delta\|_\infty \leq 1$.

![General control configuration for the case with model uncertainty](image)

SISO example: input multiplicative

![Plant with multiplicative uncertainty](image)

Figure 33: Plant with multiplicative uncertainty
Robustness: a more general control structure

Figure 71: General block diagram for analysis with uncertainty included

Figure 72: Rearranging a system with multiple perturbations into the $N\Delta$-structure
Robustness: a more general control structure

The block diagram in Figure 70 in terms of P (for synthesis) may be transformed into the block diagram in Figure 71 in terms of N (for analysis) by using K to close a lower loop around P. The same lower LFT as found in (6.66) applies, and

$$N = F_l(P, K) = P_{11} + P_{12}K(I - P_{22}K)^{-1}P_{21} \quad (6.71)$$

To evaluate the perturbed (uncertain) transfer function from external inputs w to external outputs z, we use Δ to close the upper loop around N (see Figure 71), resulting in an upper LFT:

$$z = F_u(N, \Delta)w; \quad (6.72)$$

$$F_u(N, \Delta) \triangleq N_{22} + N_{21}\Delta(I - N_{11}\Delta)^{-1}N_{12} \quad (6.73)$$