Signal- und Systemtheorie II
D-ITET, Semester 4

Notes 0: Introduction

JOHN LYGEROS

Automatic Control Laboratory, ETH Zürich
WWW.CONTROL.ETHZ.CH
Where, when & what?

- **Lectures**
 - Thursdays, 8:00-10:00, ETF E1 (and today)

- **Examples classes:**
 - Mondays, 13:00-15:00, ETF C1 and ETF E1

- **Assessment**
 - Written examination
 - Optional mid-terms
 - March 23 and May 4
 - Mid term grade 15%+15%, only together, only positive
 - Usual exemptions (military, illness, with certificate) apply
 - Possibly unconventional format
Where, when & what?

• Exercises
 – Examples papers (discussed in examples classes)
 – Exercises in lecture notes
 – Neither graded since 2014
 – Integral part of the learning experience nonetheless
 – Example paper exercises in style of final exam questions
 – Please try to do them and discuss with instructor and assistants if you have questions
 – Please attend examples classes
 – Feel free to submit your solutions for grading
Reading material

• Lecture notes
 – Slides handout, available on class webpage & Moodle
 – Blackboard notes

• Recommended book
 – http://www.cds.caltech.edu/~murray/amwiki/index.php/Main_Page

• Other excellent books
 – G.F. Franklin, J.D. Powell, and A. Emami-Naeini, “Feedback control of dynamical systems”, Prentice-Hall, 2006 (also used in Regesysteme I/II)
The TORQUE concept

• ETH TORQUE pilot course in 2014
 – Tiny, Open-with-Restrictions courses focused on QUality and Effectiveness
 – “Flipped classroom” concept
 – Use of web and mobile technology before, during, and after lecture

• Available sources of online content, different purposes
 – ETH learning management tool (Moodle)
 • Our weekly off-line preparation tool for the class
 – ETH mobile application (EduApp)
 • Real time Q&A in the classroom
 – Experimental adaptive learning platform (Albie)
 • Exam preparation and interactive learning (trust Albie)
 – Class webpage
 • Just a repository with links to all of the above
Moodle: Learning management

• Official website for the Signals and Systems II TORQUE
 – https://moodle-app2.let.ethz.ch

• Log in using your ETH account and register for the Signals and Systems II TORQUE

• What you will find:
 – Short video tutorials on course material
 – Quizzes designed to test your understanding of course material
 – Forums to interact and ask questions about the course material (anonymous)

• How it will be used:
 – Videos and quizzes will be assigned before the lectures
 – The lecture will build on top of these assignments by adding more in depth material in a (hopefully) flipped classroom atmosphere
EduApp: Interactive lectures

- EduApp can be found at
 - http://www.eduapp.ethz.ch

- Install the app on your iPhone or Android mobile phone
- Log in using your ETH account – you should automatically see the SSII course if you are registered.

- What you will find:
 - An interactive platform that can be used during the lecture

- How it will be used:
 - Questions will be posed during some lectures and example sessions and students will be asked to contribute answers
 - Back channel available where students can ask questions anonymously
Albie (Optional, self paced study)

- The experimental platform Albie can be found at
 - http://www.albie.co (Yes, that is .co NOT .com)

- Register using an ETH Zurich email address (must end in ethz.ch). After logging in for the first time, go to search and join the Signals and Systems course

- What you will find:
 - An experimental adaptive learning platform

- How it will be used:
 - Optional, not used in assignments during the semester
 - Personalized, non-linear content sequence
 - Last year many students used during their exam preparation
 - Search for content or “trust Albie” to tell you what to look at next
 - More: Learning statistics and comments attached to content
It’s all for a good cause!

• Class format new and experimental
• Much preparation, different concepts
• Please try to make the most of it
 – Watch the videos, do the quizzes, come prepared
 – Actively participate in the class, work on exercises, answer questions
 – Attend the examples classes where exam style questions will be answered
 – Provide feedback: What works, what does not
• If it all gets too much, play the SygSys game!
 – http://www.sigsystext.com/
Class content: Dynamical systems

- Describe evolution of variables over time
 - Input variables
 - Output variables
 - State variables

- Control:
 - Steer systems using inputs
 - Feedback
From signals to systems

SS1: System maps input signals to output signals

SS2: Where does input-output map come from?

RS1: What happens when we connect system inputs and outputs?
Dynamical systems

- Describe evolution of variables over time
 - Input variables
 - Output variables
 - State variables
- What is a “state”?
- What values can it take?
- What is “time”?
- What values can it take?
- What is “evolution”?
- How can evolution be described?
Discrete vs continuous

• Discrete \rightarrow Finite (or countable) values
 - $\{0, 1, 2, 3, \ldots\}$
 - $\{a, b, c, d\}$
 - $\{\text{ON, OFF}\}, \{\text{hot, warm, cool, cold}\}, \ldots$

• Continuous \rightarrow Real values
 - $x \in \mathbb{R}, x \in \mathbb{R}^n$
 - $x \in [-1,1] \Rightarrow x \in \mathbb{R}, -1 \leq x \leq 1$
 - $\{(x_1,x_2) \in \mathbb{R}^2 | x_1^2 + x_2^2 \leq 1\}$

• Hybrid \rightarrow Part discrete and part continuous
 - Airplane + flight management system
 - Thermostat + room temperature
System classification (examples)

<table>
<thead>
<tr>
<th></th>
<th>Time State</th>
<th>Discrete</th>
<th>Continuous</th>
<th>Hybrid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discrete</td>
<td></td>
<td>Finite state machines, Turing machines</td>
<td>Queuing systems</td>
<td></td>
</tr>
<tr>
<td>Continuous</td>
<td></td>
<td>(x_{k+1} = Ax_k + Bu_k) (y_k =Cx_k + Du_k)</td>
<td>Laplace transform (\dot{x}(t) = Ax(t) + Bu(t)) (y(t) = Cx(t) + Du(t))</td>
<td>Impulse differential inclusions</td>
</tr>
<tr>
<td>Hybrid</td>
<td></td>
<td>Mixed Logic-Dynamical systems</td>
<td>Switching diffusions</td>
<td>Hybrid automata</td>
</tr>
</tbody>
</table>
In this course

- We will concentrate mostly on
 - Continuous state
 - Continuous time
 - Linear systems

- We will also establish a connection to
 - Continuous state
 - Discrete time
 - Linear systems

 and to
 - Continuous state
 - Continuous time
 - Nonlinear systems

- Start with examples from many classes of systems
Course outline: Introductory material

1. Modeling
 - Mechanical and electrical systems
 - Discrete and continuous time systems
 - Discrete and continuous state systems
 - Linear and nonlinear (continuous state) systems

2. Revision: ODE and linear algebra
 - ODE = Ordinary Differential equations
 - Existence and uniqueness of solutions
 - Range and null spaces of matrices
 - Eigenvalues, eigenvectors, …
Course outline: Continuous time LTI

3. Time domain
 – LTI = Linear Time Invariant
 – State space equations
 – Time domain solution of state space equations

4. Controllability, observability, energy

5. “Frequency domain”
 – Revision of Laplace transforms
 – Laplace solution of state space equations
 – Stability
 – Bode and Nyquist plots
Course outline: Discrete time LTI and advanced topics

6. Discrete time LTI systems
 - Sampled data systems
 - Linear difference equations
 - Controllability and observability
 - \(z \)-transform
 - Simulation, Euler method and its stability

7. Nonlinear systems
 - Differences from linear systems
 - Multiple equilibria, limit cycles, chaos
 - Linearization
 - Stability
 - Examples
Notation

- \(\mathbb{Z} \) denotes the integers. This is a discrete set
 \[\mathbb{Z} = \{ \ldots, -2, -1, 0, 1, 2, \ldots \} \]
- \(\mathbb{N} \) denotes the natural numbers \(\mathbb{N} = \{0, 1, 2, \ldots \} \)
- \(\mathbb{C} \) denotes the complex numbers

\[
s = s_1 + js_2 \in \mathbb{C}
\]

\[
\text{Im}[s] = s_2
\]

\[
\text{Re}[s] = s_1
\]

\[
|s| = \sqrt{s_1^2 + s_2^2}
\]

\[
\angle s = \tan^{-1} \frac{s_2}{s_1}
\]

\[
s = |s| e^{j \angle s}
\]

\[
e^{j\theta} = \cos(\theta) + j\sin(\theta)
\]

Belongs to
Notation

- \mathbb{R}^n denotes Euclidean space of dimension n. It is a finite dimensional vector space (sometimes called linear space). Special cases:
 - $n=1$, real line, $x \in \mathbb{R}$ (drop the superscript)
 - $n=2$, real plane,
 \[x = (x_1, x_2) = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \in \mathbb{R}^2 \]
 - General n, write x as ordered list of numbers, or vector
 \[x = (x_1, x_2, \ldots, x_n) = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \in \mathbb{R}^n \]
Notation

• \(\mathbb{R}^{n \times m} \) matrices with \(n \) rows and \(m \) columns, whose elements are real

\[
A = \begin{bmatrix}
a_{11} & a_{12} & \cdots & a_{1m} \\
a_{21} & a_{22} & \cdots & a_{2m} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n1} & a_{n2} & \cdots & a_{nm}
\end{bmatrix} = \begin{bmatrix} a_{ij} \end{bmatrix}_{n \times m} \in \mathbb{R}^{n \times m}
\]

• Also a vector space, can define “length”, …

• Special cases \(\mathbb{R}^n = \mathbb{R}^{n \times 1}, \mathbb{R} = \mathbb{R}^{1 \times 1} \)

• Assume familiar with basic matrix operations (addition, multiplication, eigenvalues)
Notation

- Definition of sets \(\{ x \in \mathbb{R}^2 \mid x_1^2 + x_2^2 \leq 1 \} \)
- Special case: Intervals for \(a, b \in \mathbb{R}, a < b \)

\[
[a, b] = \{ x \in \mathbb{R} \mid a \leq x \leq b \} \quad (a, b) = \{ x \in \mathbb{R} \mid a < x < b \}
\]

\[
[a, b) = \{ x \in \mathbb{R} \mid a \leq x < b \} \quad (a, b] = \{ x \in \mathbb{R} \mid a < x \leq b \}
\]

\[
(a, \infty) = \{ x \in \mathbb{R} \mid a < x \} \quad (-\infty, b] = \{ x \in \mathbb{R} \mid x \leq b \}
\]

\[\mathbb{R}_+ = [0, \infty) \]

- \(\forall \) means “for all”
- \(\exists \) means “there exists”

Exercise: What do the sets \(\{ x \in \mathbb{R}^2 \mid x_1 = 0 \text{ or } x_2 = 0 \} \), \(\{ x \in \mathbb{R}^2 \mid |x_1| \geq |x_2| \} \) and \(\{ y \in \mathbb{R} \mid \exists x \in \mathbb{R}, y = x^2 \} \) look like?
Notation

- **Continuous time** → \(t \in \mathbb{R}_+ \)
- **Discrete time** → \(k \in \mathbb{N} \)
- **Continuous state** → \(x \in \mathbb{R}^n \)
- **Continuous input** → \(u \in \mathbb{R}^m \)
- **Continuous output** → \(y \in \mathbb{R}^p \)

- **Discrete state** → \(q \in Q \)
 - e.g. thermostat → \(q \in Q = \{ON, OFF\} \)

- **Lower case letters:** Vectors/numbers \(x, u, t, k \)
- **Upper case letters:** Matrices, \(A, B, C, \ldots \)
Notation

• $f(\cdot): X \to Y$ function returning for $x \in X$ an $f(x) \in Y$
 \[x \mapsto f(x) \]

• Example: Discrete time input signal
 \[u(\cdot): \mathbb{N} \to \mathbb{R}^m \quad k \mapsto u(k) = u_k \]

 Discrete time
 Input at time k
 Shorthand notation

• Example: Continuous time state signal
 \[x(\cdot): \mathbb{R}_+ \to \mathbb{R}^n \quad t \mapsto x(t) \]

 Continuous time
 State at time t
Linear functions: Euclidean space

- Special case: Linear function \(f(\bullet): \mathbb{R}^n \to \mathbb{R}^m \)
- For any \(x_1, x_2 \in \mathbb{R}^n, a_1, a_2 \in \mathbb{R} \)

\[
\begin{align*}
 f(a_1 x_1 + a_2 x_2) &= a_1 f(x_1) + a_2 f(x_2) \\
 \end{align*}
\]

- Multiplication by a matrix \(A \in \mathbb{R}^{m \times n} \), \(f(x) = Ax \)

\[
\begin{align*}
 f(a_1 x_1 + a_2 x_2) &= A(a_1 x_1 + a_2 x_2) = a_1 Ax_1 + a_2 Ax_2 = a_1 f(x_1) + a_2 f(x_2) \\
 \end{align*}
\]

- All linear functions on finite dimensional vector spaces can be written in this way

Exercise: Show that if \(f(\bullet): \mathbb{R}^n \to \mathbb{R}^m \), \(g(\bullet): \mathbb{R}^m \to \mathbb{R}^p \) are linear functions, then their composition \(g(f(\bullet)): \mathbb{R}^n \to \mathbb{R}^p \) is also linear. If \(f \) and \(g \) are defined in terms of matrices \(A \in \mathbb{R}^{m \times n}, B \in \mathbb{R}^{p \times m} \) what does this composition correspond to?
Linear functions: Function spaces

• Linear functions defined more generally for vector (linear) spaces

• For example, for \(u_1(\cdot), u_2(\cdot): \mathbb{R} \rightarrow \mathbb{R}, a_1, a_2 \in \mathbb{R} \)
 define \((a_1 u_1 + a_2 u_2)(\cdot): \mathbb{R} \rightarrow \mathbb{R} \) by
 \[
 (a_1 u_1 + a_2 u_2)(t) = a_1 u_1(t) + a_2 u_2(t) \quad \forall t \in \mathbb{R}
 \]

• Likewise, for \(U_1(\cdot), U_2(\cdot): \mathbb{C} \rightarrow \mathbb{C}, a_1, a_2 \in \mathbb{C} \)
 define \((a_1 U_1 + a_2 U_2)(\cdot): \mathbb{C} \rightarrow \mathbb{C} \) by
 \[
 (a_1 U_1 + a_2 U_2)(s) = a_1 U_1(s) + a_2 U_2(s) \quad \forall s \in \mathbb{C}
 \]
Laplace transform and convolution

- Given $u(\cdot): \mathbb{R} \rightarrow \mathbb{R}$
- Laplace transform $U(\cdot): \mathbb{C} \rightarrow \mathbb{C}$
 \[U(s) = \int_{-\infty}^{\infty} u(t)e^{-st} \, dt \]
- Convolution of u with fixed function $h(\cdot): \mathbb{R} \rightarrow \mathbb{R}$
 \[(u * h)(\cdot): \mathbb{R} \rightarrow \mathbb{R} \quad (u * h)(t) = \int_{-\infty}^{\infty} u(\tau)h(t - \tau) \, d\tau \]

Exercise: Show that the Laplace transform and the convolution are linear functions of $u(.)$
Subtle points

- In SSII interested in system response for positive times $t \in \mathbb{R}_+$
- Implicitly assume all signals = 0 for $t < 0$
- Hence Laplace transform simplifies to

$$U(s) = \int_{-\infty}^{\infty} u(t)e^{-st} \, dt = \int_{0}^{\infty} u(t)e^{-st} \, dt$$

(since $u(t)=0$ for $t < 0$)

- And convolution simplifies to

$$(u * h)(t) = \int_{-\infty}^{\infty} u(\tau)h(t-\tau) \, d\tau = \int_{0}^{t} u(\tau)h(t-\tau) \, d\tau$$

(since $u(\tau) = 0$ for $\tau < 0$ and $h(t-\tau) = 0$ for $\tau > t$)
Signal- und Systemtheorie II
D-ITET, Semester 4

Notes 1: Modeling

JOHN LYGEROS

Automatic Control Laboratory, ETH Zürich
WWW.CONTROL.ETHZ.CH
Series of examples

1. **Pendulum**: Continuous time, continuous state, nonlinear autonomous system

2. **RLC circuit**: Continuous time, continuous state linear system with inputs

3. **Amplifier circuit**: Continuous time, continuous state linear system with inputs and outputs

4. **Population dynamics**: Discrete time, continuous state nonlinear system

5. **Manufacturing machine**: Discrete time, discrete state system

6. **Thermostat**: Continuous time, hybrid state system
Example 1: Pendulum

- A continuous time, continuous state, autonomous, nonlinear system
- Mass m hanging from weightless string of length l
- String makes angle θ with downward vertical
- Friction with dissipation constant d
- Determine how the pendulum is going to move
- i.e. assuming we know where the pendulum is at “time” $t=0$ (θ_0) and how fast it is moving ($\dot{\theta}_0$) determine where it will be at time t ($\theta(t)$)
Pendulum: Equations of motion

• Evolution of q governed by Newton’s law

\[ml\ddot{\theta}(t) = -dl\dot{\theta}(t) - mg \sin \theta(t) \]

Exercise: Derive the differential equation from Newton’s laws of motion

• Need to solve Newton’s differential equation
• i.e. find a function $\theta(\bullet): \mathbb{R}_+ \rightarrow \mathbb{R}$

such that

\[\theta(0) = \theta_0 \quad \dot{\theta}(0) = \dot{\theta}_0 \]

\[\forall t \in \mathbb{R}_+, \quad ml\ddot{\theta}(t) = -dl\dot{\theta}(t) - mg \sin[\theta(t)] \]
Pendulum: Existence and uniqueness

• Such a function is known as a “solution” or a “trajectory” of the system

1. Does a trajectory exist for all $\theta_0, \dot{\theta}_0$?
2. Is there a unique trajectory for each $\theta_0, \dot{\theta}_0$?
3. Can we find this trajectory?

• Clearly important questions for differential equations used to model physical systems

• In general answer to questions may be “no”

• In fact, answer to question 3 usually is “no”!

• However, we can usually approximate the trajectory by computer simulation
Pendulum: MATLAB simulation

\[l = 1, m = 1, d = 1, g = 9.8, \theta_0 = 0.75, \dot{\theta}_0 = 0 \]

function [xprime] = pendulum(t,x)
xprime=[0; 0];
l = 1;
m=1;
d=1;
g=9.8;
xprime(1) = x(2);
xprime(2) = -sin(x(1))*g/l-x(2)*d/m;

>> x=[0.75 0];
>> [T,X]=ode45('pendulum', [0 10], x');
>> plot(T,X);
>> grid;
Pendulum: State space description

- Convenient to write ODE more compactly

\[\dot{x}(t) = f(x(t)), \quad x(t) \in \mathbb{R}^n \]

- For the pendulum, let

\[
x(t) = \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} \in \mathbb{R}^2 \quad \text{with} \quad x_1(t) = \theta(t), \ x_2(t) = \dot{\theta}(t)
\]

Exercise: A different \(f(x(t))\) would be obtained if \(x_1(t)\) and \(x_2(t)\) are selected differently.

Derive \(f(x(t))\) for

\[
x_1(t) = \theta^3(t) + \dot{\theta}(t), \ x_2(t) = \dot{\theta}(t)
\]

- Then

\[
\dot{x}(t) = \begin{bmatrix} x_2(t) \\ -\frac{d}{m} x_2(t) - \frac{g}{l} \sin x_1(t) \end{bmatrix} = f(x(t))
\]
Pendulum: State space description

- This first order ODE for \(x(t) \in \mathbb{R}^2 \) describes exactly the same “dynamics” as second order ODE for \(\theta(t) \in \mathbb{R} \)
- Vector \(x(t) \in \mathbb{R}^2 \) called the state of the system
- Function \(f(\bullet): \mathbb{R}^2 \rightarrow \mathbb{R}^2 \) called the vector field
- For the pendulum \(f \) is a nonlinear function of \(x \)
- Solving Newton’s equation is equivalent to finding a function \(x(\bullet): \mathbb{R}_+ \rightarrow \mathbb{R}^2 \)

such that

\[
x(0) = \begin{bmatrix} \theta_0 \\ \dot{\theta}_0 \end{bmatrix} \\
\forall t \in \mathbb{R}_+, \quad \dot{x}(t) = f(x(t))
\]
Pendulum: Vector field & phase plane

Vector field $f(x)$

Trajectory $x_2(t)$ vs. $x_1(t)$

$\begin{align*}
\dot{x}_1 &= f(x_1, x_2) \\
\dot{x}_2 &= g(x_1, x_2)
\end{align*}$

$t = 0$
Example 2: RLC circuit

- Continuous time, continuous state, linear system
- Input voltage $v_1(t)$ (not autonomous)
- Determine evolution of voltages and currents

\[v_R(t) - v_L(t) + v_{1}(t) - v_C(t) \]

\[R \quad L \quad C \]

\[i_L(t) \]
RLC circuit: Equations of “motion”

- From Kirchhoff’s laws + element equations
- E.g.
 \[C \frac{dv_C(t)}{dt} = i_L(t) \]
 \[L \frac{di_L(t)}{dt} = v_L(t) \]
 \[v_R(t) = Ri_L(t) \]
 \[v_L(t) = v_1(t) - v_R(t) - v_C(t) \]

 \[\frac{d^2v_c(t)}{dt^2} + \frac{R}{L} \frac{dv_c(t)}{dt} + \frac{1}{LC} v_c(t) = \frac{1}{LC} v_1(t) \]

- Solution to ODE gives \(v_C(t) \)
- All other voltages and currents can be computed from \(v_C(t) \)
RLC circuit: MATLAB simulation

\[R = 10 \quad L = 1 \]
\[C = 0.01 \quad x_0 = 0 \]

Low pass filter

Exercise: Modify the MATLAB code for the pendulum to simulate the RLC circuit and generate such plots.
RLC circuit: State space description

- Try to write first order vector ODE $\dot{x}(t) = f(x(t)), x(t) \in \mathbb{R}^n$
- Based on our experience with the pendulum
 - Second order ODE for $v_C(t)$ suggests $x(t) \in \mathbb{R}^2$
 - $x(t)$ has something to do with energy
 - Potential (θ) and kinetic ($\dot{\theta}$) in the pendulum
 - Stored in capacitor (v_C) and inductor (i_L) in circuit
- Try $x(t) = \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} \in \mathbb{R}^2, \quad x_1(t) = v_C(t), \quad x_2(t) = i_L(t)$

(in circuits this usually works: Voltages across capacitors and currents through inductors can be selected as the states)

- Input voltage: External source of energy $u(t) = v_1(t)$
RLC circuit: State space description

- Relate state \(x(t) \) and input \(u(t) \)

\[
C \frac{dv_C(t)}{dt} = i_L(t) \Rightarrow \dot{x}_1(t) = \frac{1}{C} x_2(t)
\]

\[
L \frac{di_L(t)}{dt} = v_1(t) - v_R(t) - v_C(t) \Rightarrow \dot{x}_2(t) = \frac{1}{L} u(t) - \frac{R}{L} x_2(t) - \frac{1}{L} x_1(t)
\]

- In matrix form

\[
\dot{x}(t) = \begin{bmatrix}
0 & \frac{1}{C} \\
-\frac{1}{L} & -\frac{R}{L}
\end{bmatrix} x(t) + \begin{bmatrix}
0 \\
\frac{1}{L}
\end{bmatrix} u(t)
\]
RLC circuit: State space description

- Have written ODE of the form
 \[\dot{x}(t) = Ax(t) + Bu(t) = f(x(t), u(t)) \]

- Similarities to pendulum
 - 2nd order ODE → two states
 - States related to energy stored in system

- Differences from pendulum
 - External source of energy → input \(u(t) \)
 → system no longer “autonomous”
 - Function \(f(x,u) \) linear in \(x \) and \(u \)
 → dynamics described by linear ODE

Exercise: What are the matrices \(A \) and \(B \)?
Example 3: Amplifier circuit

- Continuous time, continuous state linear system
- Input voltage $v_1(t)$
- Output voltage $v_0(t)$
Reminder: Operational amplifier (OpAmp)

External voltage source (not shown) provides energy for gain
Reminder: Ideal OpAmp

• Assume

 \[R_{in} \approx \infty \quad \Rightarrow \quad i_{in} \approx 0 \]

 \[R_{out} \approx 0 \quad \Rightarrow \quad i_{out} \text{ independent of } v_{out} \]

 \[\mu \approx \infty \quad \Rightarrow \quad v_{in} \approx 0 \text{ if } v_{out} \text{ finite} \]

• “Virtual earth assumption”
• Makes circuit analysis much easier
• Note that
 – Input power \(i_{in}v_{in}=0 \)
 – Output power \(i_{out}v_{out} \) is arbitrary
• Necessary energy comes from external voltage source (not shown!)
Amplifier circuit: Equations of motion

- Assuming OpAmp is ideal

\[
\begin{align*}
C_1 \frac{dv_{c_1}(t)}{dt} &= i_1(t) \\
v_{in} \approx 0 &\Rightarrow i_1(t) = \frac{v_1(t) - v_{c_1}(t)}{R_1} \\
C_0 \frac{dv_{c_0}(t)}{dt} &= i_{c_0}(t) \\
i_{in} \approx 0 &\Rightarrow i_1(t) = i_{c_0}(t) + i_{R_0}(t) \\
i_{R_0}(t) &= \frac{1}{R_0} v_{c_0}(t)
\end{align*}
\]

\[
\begin{align*}
\frac{dv_{c_1}(t)}{dt} &= -\frac{v_{c_1}(t)}{R_1C_1} + \frac{v_1(t)}{R_1C_1} \\
\frac{dv_{c_0}(t)}{dt} &= -\frac{v_{c_0}(t)}{R_0C_0} - \frac{v_{c_1}(t)}{R_1C_0} + \frac{v_1(t)}{R_1C_0} \\
v_{in} \approx 0 &\Rightarrow v_0(t) = -v_{c_0}(t)
\end{align*}
\]
Amplifier circuit: State space description

• First order ODE in vector variables
• From our experience so far we would expect
 – Two state variables
 – Voltages of capacitors, $x_1(t)=v_{c1}(t)$, $x_2(t)=v_{c0}(t)$
 – One input variable, $u(t)=v_1(t)$
 – One output variable, $y(t)=v_0(t)$
• Write equations that relate input, states and output

\[
\frac{dx(t)}{dt} = \begin{bmatrix}
-\frac{1}{R_1C_1} & 0 \\
-\frac{1}{R_1C_0} & -\frac{1}{R_0C_0}
\end{bmatrix} x(t) + \begin{bmatrix}
\frac{1}{R_1C_1} \\
\frac{1}{R_1C_0}
\end{bmatrix} u(t)
\]

\[
y(t) = \begin{bmatrix}
0 & -1
\end{bmatrix} x(t)
\]
Amplifier circuit: State space description

- Have written in the form

\[\dot{x}(t) = Ax(t) + Bu(t) = f(x(t),u(t)) \]
\[y(t) = Cx(t) + Du(t) = h(x(t),u(t)) \]

- \(f \) and \(h \) are linear functions of the state and inputs

Exercise: What are the matrices \(A, B, C \) and \(D \)? What are their dimensions?

Exercise: Modify the matlab code given for the pendulum to simulate the amplifier circuit
Amplifier circuit: Simulation

Exercise: Why does the output settle to zero even though input is non-zero?
Amplifier circuit: Energy

- Energy stored in the system

\[E(t) = \frac{1}{2} C_1 v_{C_1}^2(t) + \frac{1}{2} C_0 v_{C_0}^2(t) = \frac{1}{2} x(t)^T \begin{bmatrix} C_1 & 0 \\ 0 & C_0 \end{bmatrix} x(t) \]

- Quadratic function of the state

\[E(t) = \frac{1}{2} x(t)^T Q x(t) \]

Exercise: What is the matrix \(Q \) in this case?

Exercise: Derive the energy equations for the pendulum and the RLC circuit. Can you find a matrix \(Q \) in both cases?
Amplifier circuit: Power

- Power: Instantaneous energy change

\[P(t) = \frac{d}{dt} E(t) = \frac{1}{2} \dot{x}(t)^T Q x(t) + \frac{1}{2} x(t)^T Q \dot{x}(t) \]

\[= \frac{1}{2} \left(x(t)^T A^T + u(t)^T B^T \right) Q x(t) + \frac{1}{2} x(t)^T Q \left(A x(t) + B u(t) \right) \]

\[= \frac{1}{2} x(t)^T \left(A^T Q + QA \right) x(t) + \frac{1}{2} \left(u(t)^T B^T Q x(t) + x(t)^T Q B u(t) \right) \]

- Quadratic in state and input
- If there is no input \((u(t)=0)\)

\[P(t) = \frac{1}{2} x(t)^T \left(A^T Q + QA \right) x(t) \]
Amplifier circuit: Power \((u(t)=0)\)

\[
P(t) = \frac{1}{2} x(t)^T \begin{bmatrix}
-\frac{1}{R_1 C_1} & -\frac{1}{R_1 C_0} \\
0 & -\frac{1}{R_0 C_0}
\end{bmatrix} \begin{bmatrix}
C_1 & 0 \\
0 & C_0
\end{bmatrix} + \begin{bmatrix}
C_1 & 0 \\
0 & C_0
\end{bmatrix} \begin{bmatrix}
-\frac{1}{R_1 C_1} & 0 \\
-\frac{1}{R_1 C_0} & -\frac{1}{R_0 C_0}
\end{bmatrix} x(t)
\]

\[
= \frac{1}{2} x(t)^T \begin{bmatrix}
-\frac{2}{R_1} & -\frac{1}{R_1} \\
\frac{1}{R_1} & -\frac{2}{R_0}
\end{bmatrix} x(t)
\]

\[
\Rightarrow P(t) = -\frac{x_1(t)^2}{R_1} - \frac{x_1(t)x_2(t)}{R_1} - \frac{x_2(t)^2}{R_0}
\]

Exercise: Derive this equation directly by differentiating the energy of the circuit

\[
E(t) = \frac{1}{2} C_1 v_{C_1}^2(t) + \frac{1}{2} C_0 v_{C_0}^2(t)
\]

Exercise: Repeat for the RLC circuit and pendulum
Population dynamics

• A discrete time, continuous state system
• Experiment:
 – Closed jar containing a number \(N \) of fruit flies
 – Constant food supply
• Question: How does fly population evolve?
• Number of flies limited by available food, epidemics
 – Few flies \(\rightarrow \) abundance of space/food \(\rightarrow \) more flies
 – Many flies \(\rightarrow \) competition for space/food \(\rightarrow \) fewer flies
• Maximum number “ecosystem” can support \(N_{\text{MAX}} \)
• State: Normalized population

\[
x = \frac{N}{N_{\text{MAX}}} \in [0,1]
\]
Population dynamics: State space model

- Track x from generation to generation: x_k population at generation k
- How does population at generation $k+1$ depend on x_k?
- Classic model: Logistic map

$$x_{k+1} = rx_k(1 - x_k) = f(x_k)$$

Exercise: Is the function $f(x)$ linear or non-linear?

Exercise: Show that if $r \in [0, 4]$ and $x_0 \in [0, 1]$ then $x_k \in [0, 1]$ for all $k=0, 1, 2, \ldots$
Population dynamics: Solution

- r represents the “food” supply
 - Large r means a lot of food is provided
 - Small r means little food is provided
- Shape of $f(x)$ reflects population trends
 - Small population now \rightarrow small population next generation (not enough individuals to breed)
 - Large population now \rightarrow small population next generation (food/living space shortage, epidemics, etc.)
- How does the population change in time?
- This depends a lot on r
 1. If $r \in [0,1)$ then x_k decays to 0 (i.e. all flies die)
 2. If $r \in [1,3)$ then x_k tends to a steady state value (i.e. the fly population stabilizes)
 3. If $r \in [3,1+\sqrt{6})$ then x_k tends to a 2-periodic solution (i.e. the population alternates between two values)
 4. Eventually chaotic behavior!
Population dynamics: Simulation

- $r = 0.5$
- $r = 1.5$
- $r = 3.3$
- $r = 3.99$
Manufacturing system

• A discrete time, discrete state system
• Model of a machine in a manufacturing shop
• Machine can be in three states
 – Idle (I)
 – Working (W)
 – Broken (D)
• State changes when certain “events” happen
 – A part arrives and starts getting processed (p)
 – The processing is completed and the part moves on to the next machine (c)
 – The machine fails (f)
 – The machine is repaired (r)
• Finite number of states and inputs:
 – Finite State machine or
 – Finite Automaton
Manufacturing system: State space model

- Possible states of the machine
 \[q \in Q = \{ I, W, D \} \]
- Possible inputs (events)
 \[\sigma \in \Sigma = \{ p, c, f, r \} \]
- Not all events are possible for all states, e.g.
 - A part cannot start getting processed (\(\sigma = p \)) while the machine is broken (\(q = D \))
 - The machine can only be repaired (\(\sigma = r \)) when broken (\(q = D \))
- Transition function \(\delta : Q \times \Sigma \to Q \)
- Write as discrete time system
 \[q_{k+1} = \delta(q_k, \sigma_k) \]

Exercise: Is \(\delta \) linear or nonlinear? Does the question even make sense?
Manufacturing system: Automaton

\[\delta(I, p) = W \]
\[\delta(W, c) = I \]
\[\delta(W, f') = D \]
\[\delta(D, r) = I \]

- All other combinations not allowed
- Assume we start at \(I \)
- Easier to represent by a graph

Exercise: If graph has \(e \) arrows, how many lines are needed to define \(\delta \)?

Exercise: \(Q \) has \(n \) elements and \(\Sigma \) has \(m \) elements, how many lines are needed (at most) to define \(\delta \)?

\[\text{Initial state} \]
Manufacturing system: Solution

• Assume initially $q_0 = I$. What are the sequences of events the machine can experience?

• Some sequences are possible while others are not
 – $pcp \rightarrow$ possible
 – $ppc \rightarrow$ impossible

• The set of all acceptable sequences is called the language of the automaton

• The following are OK
 – Arbitrary number of pc denoted by $(pc)^*$
 – Arbitrary number of pfr denoted by $(pfr)^*$
 – Possibly followed by a p or pf

\[(p \cdot c + p \cdot f \cdot r)^* \cdot (1 + p + p \cdot f)\]
Thermostat

- A continuous time, hybrid system
- Thermostat is trying to keep the temperature of a room at around 20 degrees
 - Turn heater on if temperature ≤ 19 degrees.
 - Turn heater off if temperature ≥ 21 degrees.
- Due to uncertainty in the radiator dynamics, the temperature may fall further, to 18 degrees, or rise further, to 22 degrees
- Both a continuous and a discrete state
 - Discrete state: Heater $q(t) \in Q = \{ON, OFF\}$
 - Continuous state: Room temperature $x(t) \in \mathbb{R}$
- Evolution in continuous time
- No external input (autonomous system)
Thermostat: State space model

- Different differential equations for x, depending on ON or OFF
 - Heater OFF: Temperature decreases exponentially toward 0
 $$\dot{x}(t) = -\alpha x(t)$$
 - Heater ON: Temperature increases exponentially towards 30
 $$\dot{x}(t) = -\alpha (x(t) - 30)$$
- Heater changes from ON to OFF and back depending on $x(t)$
- Natural to describe by mixture of differential equation and graph notation

Exercise: Solve the differential equations to verify exponential increase/decrease.
Thermostat: Hybrid automaton

Initial state (OFF,20)

x(0) = 20

OFF

\dot{x}(t) = -ax(t)

x(t) \geq 18

Can stay OFF as long as ...

x(t) \leq 19

Can go ON provided that ...

ON

\dot{x}(t) = -a(x(t) - 30)

x(t) \leq 22

While OFF x(t) changes according to ...

x(t) \geq 21
Thermostat: Solutions

$q(t)$

$x(t)$
Continuous modeling: Generic steps

1. Identify input variables
 - Usually obvious
 - Quantities that come from the outside
 - Say \(m \) such input variables
 - Stack them in vector form, denote by \(u(t) \in \mathbb{R}^m \)

2. Identify output variables
 - Usually obvious
 - Quantities that can be measured
 - Say \(p \) such quantities
 - Stack them in vector form, denote by \(y(t) \in \mathbb{R}^p \)
Continuous modeling: Generic steps

3. Select state variables
 - Need to encapsulate the past
 - Need (together with inputs) to determine future
 - For physical systems often related to energy storage
 - For mechanical systems can usually select positions \((q(t))\) and velocities \((v(t))\)
 - For electrical circuits can usually select capacitor voltages \((v_C(t))\) and inductor currents \((i_L(t))\)
 - Other choices possible, may lead to simpler models
 - Say \(n\) such variables
 - Stack them in vector form, denote by \(x(t) \in \mathbb{R}^n\)
Continuous modeling: Generic steps

4. Take derivatives of states
 - Try to obtain n equations with derivative of one state on the left hand side and a function of the states and inputs on the right hand side
 - For mechanical systems
 • Position derivatives easy, $\dot{q}(t) = v(t)$
 • Velocity derivatives (=accelerations) from Newton law
 - For electrical circuits
 • Current/voltage relations $C \frac{dv_C(t)}{dt} = i_C(t), \quad L \frac{di_L(t)}{dt} = v_L(t)$
 • Relate to each other by Kirchoff’s laws
 - Result: Vector differential equation $\dot{x}(t) = f(x(t), u(t))$
Continuous modeling: Generic steps

5. Write output variables as a function of state and input variables
 - Usually easy
 - Result: Vector algebraic equation $y(t) = h(x(t), u(t))$

6. Determine whether the system is linear, etc.
 - Are the functions f and h linear or not?

Disclaimer:
 - Generic steps seem easy, but require creativity!
 - Mathematical models never the same as reality
 - With any luck, close enough to be useful
Signal- und Systemtheorie II
D-ITET, Semester 4

Notes 2: Revision of ODE and linear algebra

John Lygeros

Automatic Control Laboratory, ETH Zürich
WWW.CONTROL.ETHZ.CH
State space models

- For the time being continuous time, continuous state models
 - Nonlinear
 - Linear
- State equations are ordinary differential equations
 - Reminder of some tools to deal with these
- Continuous state models have extra structure
 - States, inputs, and outputs take values in vector spaces
- To exploit structure need tools from linear algebra
- Discrete time continuous state models very similar
 - State equations are difference equations, else the same
- Discrete state and hybrid models somewhat different
Assumed to be known

- Matrix product, compatible dimensions
 - Associative: \((AB)C = A(BC)\)
 - Distributive with respect to addition: \(A(B + C) = AB + AC\)
 - Non-commutative: \(AB \neq BA\) in general

- Transpose of a matrix
 - \((AB)^T = B^T A^T\)

- For square matrices
 - Identity matrix \(AI = IA = A\)
 - In every dimension there exists a unique identity matrix
 - Inverse matrix \(A^{-1}A = AA^{-1} = I\)
 - May not always exist
 - When it does it is unique
 - Computation of the determinant and its basic properties
The 2-norm

Definition: The 2-norm is a function \(\| \cdot \| : \mathbb{R}^n \rightarrow \mathbb{R} \) that to each \(x \in \mathbb{R}^n \) assigns a real number

\[
\| x \| = \sqrt{\sum_{i=1}^{n} x_i^2}
\]

Fact 2.1: For all \(x, y \in \mathbb{R}^n, a \in \mathbb{R} \)
1. \(\| x \| \geq 0 \) and \(\| x \| = 0 \) if & only if \(x = 0 \)
2. \(\| ax \| = |a| \cdot \| x \| \)
3. \(\| x + y \| \leq \| x \| + \| y \| \)

Exercise: Show that \(\| x \|^2 = x^T x \)

Exercise: Prove 1 and 2. Is the 2-norm a linear function?

- The 2-norm is a measure of “size” or “length”
- Distance between \(x, y \in \mathbb{R}^n \) is \(\| x - y \| \)
- The set of points that are closer than \(r > 0 \) to \(x \in \mathbb{R}^n \)

\[
\left\{ y \in \mathbb{R}^n \mid \| x - y \| < r \right\}
\]
Inner product

Definition: The **inner product** is a function \(\langle \cdot, \cdot \rangle : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R} \) that takes two vectors \(x, y \in \mathbb{R}^n \) and returns the real number
\[
\langle x, y \rangle = \sum_{i=1}^{n} x_i y_i = x^T y
\]

Fact 2.2: For all \(x, y, z \in \mathbb{R}^n \), \(a, b \in \mathbb{R} \)
1. \(\langle x, y \rangle = \langle y, x \rangle \)
2. \(a \langle x, y \rangle + b \langle z, y \rangle = \langle ax + bz, y \rangle \)
3. \(\langle x, x \rangle = \|x\|^2 \)

Exercise: Prove these. For fixed \(y \), is the function \(\langle y, \cdot \rangle \) linear?

- **Orthogonal:** Meet at right angles
- **Orthonormal:** Pairwise orthogonal and unit length

Exercise: Are the vectors \(
\begin{bmatrix}
0 \\
2 \\
\end{bmatrix},
\begin{bmatrix}
1 \\
0 \\
\end{bmatrix}
\)
othogonal? Orthonormal?
Linear independence

Definition: A set of vectors \(\{x_1, x_2, \ldots, x_m\} \in \mathbb{R}^n \) is called **linearly independent** if for \(a_1, a_2, \ldots, a_m \in \mathbb{R} \)

\[
a_1 x_1 + a_2 x_2 + \cdots + a_m x_m = 0 \iff a_1 = a_2 = \cdots = a_m = 0
\]

Otherwise they are called linearly dependent.

• Linearly dependent if and only if at least one is a linear combination of the rest. E.g. if \(a_1 \neq 0 \)

\[
a_1 x_1 + a_2 x_2 + \cdots + a_m x_m = 0 \Rightarrow x_1 = -\frac{a_2}{a_1} x_2 - \cdots - \frac{a_m}{a_1} x_m
\]

Fact 2.3: There exists a set with \(n \) linearly independent vectors in \(\mathbb{R}^n \), but any set with more than \(n \) vectors is linearly dependent.

Exercise: What is a set of \(n \) linearly independent vectors of \(\mathbb{R}^n \)?
Subspaces

Definition: A set of vectors $S \subseteq \mathbb{R}^n$ is called a **subspace** of \mathbb{R}^n if for all $x, y \in S$ and $a, b \in \mathbb{R}$, we have that $ax + by \in S$.

- Note that the set S is generally an infinite set
- Examples of subspaces of \mathbb{R}^n
 - $S = \mathbb{R}^n$ and $S = \{0\}$
 - $\{x \in \mathbb{R}^n \mid x_1 = 2x_2\}$
 - $\{x \in \mathbb{R}^n \mid x_1 = 0\}$
- Not subspaces
 - $\{x \in \mathbb{R}^n \mid x_1 = 1\}$
 - $\{x \in \mathbb{R}^n \mid x_1 = 0 \text{ or } x_2 = 0\}$

Exercise: Draw these sets for $n=2$. Prove that they are/are not subspaces.
Basis of a subspace

Definition: The span of \(\{x_1, x_2, \ldots, x_m\} \subset \mathbb{R}^n \) is set of all linear combinations of these vectors.

- In fact, span = smallest subspace containing \(\{x_1, x_2, \ldots, x_m\} \)

Exercise: Show span is a subspace.

Definition: A set of vectors \(\{x_1, x_2, \ldots, x_m\} \subset \mathbb{R}^n \) is called a basis for a subspace \(S \subset \mathbb{R}^n \) if

1. \(\{x_1, x_2, \ldots, x_m\} \) are linearly independent
2. \(S = \text{span}\{x_1, x_2, \ldots, x_m\} \)

In this case, \(m \) is called the dimension of \(S \).

- All subspaces of \(\mathbb{R}^n \) have bases. The number of vectors, \(m \), in all bases of a given subspace is the same. By Fact 2.3, \(n \geq m \)
- Basis of subspace is not unique
- Different bases related through “change of coordinates”
Range space of a matrix

Definition: The **range space** of a matrix \(A \in \mathbb{R}^{n \times m} \) is the set
\[
\text{range}(A) = \{ y \in \mathbb{R}^n \mid \exists x \in \mathbb{R}^m, y = Ax \}.
\]

Fact 2.4: \(\text{range}(A) \) is a subspace of \(\mathbb{R}^n \)

Definition: The **rank** of a matrix \(A \in \mathbb{R}^{n \times m} \) is the dimension of \(\text{range}(A) \).

Fact 2.5: \(\text{range}(A) = \text{span}\{a_1, a_2, \ldots, a_m\} \).

\(\text{rank}(A) \) = number of linearly independent columns, \(a_1, \ldots, a_m \) of \(A \).

Exercise: Prove Fact 2.4

Exercise: Prove Fact 2.5
Null space of a matrix

Definition: The **null space** of a matrix \(A \in \mathbb{R}^{n \times m} \) is the set

\[
\text{null}(A) = \left\{ x \in \mathbb{R}^m \mid Ax = 0 \right\}
\]

Fact 2.6: \(\text{null}(A) \) is a subspace of \(\mathbb{R}^m \)

Exercise: Prove Fact 2.6

\[
A = \left[\begin{array}{c}
\hat{a}_1^T \\
\vdots \\
\hat{a}_n^T
\end{array} \right], \text{ where } \hat{a}_i^T = \left[a_{i1} \ a_{i2} \cdots a_{im} \right]
\]

Fact 2.7: \(\text{null}(A) \) = set of vectors orthogonal to the rows of \(A \)

Exercise: Prove Fact 2.7

Fact 2.8: \(\text{rank}(A) \) = number of linearly independent rows, \(\hat{a}_1, \ldots, \hat{a}_n \) of \(A \)
Inverse of a square matrix

Definition: The inverse of a matrix $A \in \mathbb{R}^{n \times n}$ is a matrix $A^{-1} \in \mathbb{R}^{n \times n}$

$$A^{-1}A = AA^{-1} = I$$

Fact 2.9: If an inverse of A exists then it is unique.

Exercise: Prove Fact 2.9

Definition: A matrix is called singular if it does not have an inverse. Otherwise it is called non-singular or invertible.

Fact 2.10: A is invertible if and only if $\det(A) \neq 0$
Inverse of a square matrix

If A is invertible

$$A^{-1} = \frac{\text{adj}(A)}{\det(A)}$$

Adjoint matrix = matrix of subdeterminants transposed

Exercise: Show that

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} \frac{1}{ad - bc}$$

Fact 2.11: A is invertible if and only if the system of linear equations $Ax = y$ has a unique solution $x \in \mathbb{R}^n$ for all $y \in \mathbb{R}^n$

Fact 2.12: A is invertible if and only if $\text{null}(A) = \{0\}$

Fact 2.13: A is invertible if and only if $\text{range}(A) = \mathbb{R}^n$

Exercise: Prove Facts 2.11-2.12
Systems of linear equations

\[Ax = y \quad A \in \mathbb{R}^{n \times m}, \ y \in \mathbb{R}^n \ \text{given} \]
\[x \in \mathbb{R}^m \ \text{unknown} \]

- \(m=n \) unique solutions if and only if \(A \) invertible (Fact 2.11)
- If \(A \) singular system will have either no solutions, or infinite number of solutions
- \(n>m \rightarrow \) equations \(> \) unknowns \(\rightarrow \) generally no solution

Fact 2.14: If \(A \) has rank \(m \) then \(x = \left(A^T A \right)^{-1} A^T y \) is the unique minimizer of \(\|Ax - y\| \)

- \(n<m \rightarrow \) unknowns \(> \) equations \(\rightarrow \) generally infinite solutions

Fact 2.15: If \(A \) has rank \(n \) then the system has infinitely many solutions. The one with the minimum norm is \(x = A^T \left(AA^T \right)^{-1} y \)
Orthogonal matrices

Definition: A matrix is called **orthogonal** if $AA^T = A^T A = I$

Fact 2.16: A is orthogonal if and only if its columns are ortho-normal. The product of orthogonal matrices is orthogonal. If A is orthogonal then $\|Ax\| = \|x\|$

Exercise: Prove Fact 2.16
Definition: A (nonzero) vector \(w \in \mathbb{C}^n \) is called an *eigenvector* of a matrix \(A \in \mathbb{R}^{n \times n} \) if there exists a number \(\lambda \in \mathbb{C} \) such that
\[
Aw = \lambda w.
\]
The number \(\lambda \) is then called an *eigenvalue* of \(A \).

- Eigenvalues and eigenvectors are in general complex even if \(A \) is a real matrix.
- An \(n \times n \) matrix has \(n \) eigenvalues (some may be repeated).
 They are the solutions of the characteristic polynomial
 \[
 \det(\lambda I - A) = \lambda^n + a_1 \lambda^{n-1} + a_2 \lambda^{n-2} + \cdots + a_n = 0
 \]
- The \(n \) eigenvalues of \(A \) are called the *spectrum* of \(A \).

Exercise: Show that if \(w \) is an eigenvector then so is \(aw \) for any \(a \in \mathbb{C} \).
Eigenvalues and eigenvectors

Theorem 2.1: (Cayley-Hamilton) Every matrix A is a solution of its characteristic polynomial

$$A^n + a_1 A^{n-1} + a_2 A^{n-2} + \cdots + a_n I = 0$$

Exercise: Show that this implies that all powers A^m for $m=0, 1, \ldots$ can be written as linear combinations of $I, A, A^2, \ldots, A^{n-1}$

Fact 2.17: A is invertible if and only if all its eigenvalues are non-zero

Exercise: Show Fact 2.17 using Fact 2.12
Diagonalizable matrices

\[Aw_i = \lambda_i w_i \Rightarrow A[w_1 \ w_2 \ \ldots \ w_n] = [w_1 \ w_2 \ \ldots \ w_n] \begin{bmatrix} \lambda_1 & 0 & \ldots & 0 \\ 0 & \lambda_2 & \ldots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \ldots & \lambda_n \end{bmatrix} \]

\[W \in \mathbb{C}^{n \times n} \]
\[\Lambda \in \mathbb{C}^{n \times n} \]

Definition: A is called \textbf{diagonalizable} if \(W \) is invertible

Fact 2.18: If the eigenvalues of \(A \) are distinct (\(\lambda_i \neq \lambda_j \) if \(i \neq j \)) then its e-vectors are linearly independent

Exercise: Show that Fact 2.18 implies that \(W \) is invertible
Symmetric, positive definite and positive semi-definite matrices

Definition: A matrix is called **symmetric** if $A = A^T$.

Fact 2.19: Symmetric matrices have real eigenvalues and orthogonal eigenvectors.

Exercise: If A is symmetric then there exist $U \in \mathbb{R}^{n \times n}$ orthogonal & $\Lambda \in \mathbb{R}^{n \times n}$ diagonal such that $A = U \Lambda U^T$.

Definition: A symmetric matrix is called **positive definite** if $x^T A x > 0$ for all $x \neq 0$. It is called **positive semi-definite** if $x^T A x \geq 0$.

Fact 2.20: A matrix is positive definite if and only if it has (real) positive e-values. It is positive semi-definite if and only if it has (real) non-negative e-values.

We use $A > 0$ (resp. $A \geq 0$) as a shorthand for A symmetric, positive (semi-)definite.
Singular value decomposition

Fact 2.21: For any \(A \in \mathbb{R}^{n \times m} \)

\[
A = U \Sigma V^T
\]

where \(U \in \mathbb{R}^{n \times n} \) and \(V \in \mathbb{R}^{m \times m} \) are orthogonal and \(\Sigma \in \mathbb{R}^{n \times m} \) “diagonal” with non-negative elements.

The elements of \(\Sigma \) are called the **singular values** of \(A \).
State Space: Inputs, outputs and states

- Mathematical model of physical system described by
 - Input variables (denoted by $u_1, u_2, \ldots, u_m \in \mathbb{R}$)
 - Output variables (denoted by $y_1, y_2, \ldots, y_p \in \mathbb{R}$)
 - State variables (denoted by $x_1, x_2, \ldots, x_n \in \mathbb{R}$)
- All inputs states and outputs are real numbers
- Usually write more compactly as vectors

$$u = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_m \end{bmatrix} \in \mathbb{R}^m \quad y = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_p \end{bmatrix} \in \mathbb{R}^p \quad x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \in \mathbb{R}^n$$

Input vector \hspace{1cm} Output vector \hspace{1cm} State vector

Exercise: Which of the examples in Notes 1 can be described by real vectors? What are these vectors?

- Number of states, n, is called **dimension** (or **order**) of the system
State space: Dynamics

- Dynamics of process imply relations between variables
 - Differential equations giving evolution of states as a function of the states, inputs and possibly time, i.e. we have functions

\[f_i(\cdot) : \mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R}_+ \to \mathbb{R}, \quad \frac{d}{dt} x_i(t) = f_i(x(t),u(t),t), \quad i = 1,\ldots,n \]

 - Algebraic equations giving the outputs as a function of the states, inputs and possibly time, i.e. we have functions

\[h_i(\cdot) : \mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R}_+ \to \mathbb{R}, \quad y_i(t) = h_i(x(t),u(t),t), \quad i = 1,\ldots,p \]

- Equations usually come from “laws of nature”
 - Newton’s laws for mechanical systems
 - Electrical laws for circuits
 - Energy and mass balance for chemical reactions
In vector form

- Usually write more compactly be defining

\[f(\cdot) : \mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R}_+ \rightarrow \mathbb{R}^n \quad h(\cdot) : \mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R}_+ \rightarrow \mathbb{R}^p \]

\[f(x,u,t) = \begin{bmatrix} f_1(x,u,t) \\ \vdots \\ f_n(x,u,t) \end{bmatrix} \quad h(x,u,t) = \begin{bmatrix} h_1(x,u,t) \\ \vdots \\ h_p(x,u,t) \end{bmatrix} \]

- Then state, input and output vectors are linked by

\[\frac{dx(t)}{dt} = f(x(t),u(t),t) \]
\[y(t) = h(x(t),u(t),t) \]

- State space form
- \(f \) called the vector field

Exercise: What are the functions \(f \) for the pendulum, RLC and opamp examples of Notes 1? What are the dimensions of these systems?
Linear and autonomous systems

Definition: A system in state space form is called **autonomous** if it is time invariant and has no input variables

\[\dot{x}(t) = f(x(t)), \quad y(t) = h(x(t)) \]

Exercise: Which of the systems considered in Notes 1 are autonomous? Which are time invariant?

Definition: A system in state space form is called **linear** if the functions \(f \) and \(h \) are linear, i.e.

\[\dot{x}(t) = A(t)x(t) + B(t)u(t) \]

\[y(t) = C(t)x(t) + D(t)u(t) \]

Exercise: Which of the systems considered in Notes 1 are linear?

Exercise: What are the general equations for a linear time invariant system?
Higher order differential equations

• Often “laws of nature” expressed in terms of higher order differential equations
 – For example, Newton’s law \rightarrow second order ODE

• These can be converted to state space form by defining lower order derivatives (all except the highest) as states

Exercise: Convert the following differential equation of order r into state space form

$$\frac{d^r y(t)}{dt^r} + g \left(y(t), \frac{dy(t)}{dt}, \ldots, \frac{d^{r-1} y(t)}{dt^{r-1}} \right) = 0$$

What is the dimension of the resulting system? Is it autonomous? Under what conditions is it linear?
Time invariant systems

- The explicit time dependence can be eliminated by introducing time as an additional state with
 \[\dot{t} = 1 \]
- The result is a **time invariant system** of dimension \(n+1 \)

Exercise: Convert the following time varying system
\[
\begin{align*}
\dot{x}(t) &= f(x(t), u(t), t), \quad x \in \mathbb{R}^n \\
y(t) &= h(x(t), u(t), t)
\end{align*}
\]
of dimension \(n \) into a time invariant system of dimension \(n+1 \).

Exercise: Repeat for the linear time varying system
\[
\begin{align*}
\dot{x}(t) &= A(t)x(t) + B(t)u(t), \quad x \in \mathbb{R}^n \\
y(t) &= C(t)x(t) + D(t)u(t)
\end{align*}
\]
Is the resulting time invariant system linear?
Coordinate transformation

- What happens if we perform a change of coordinates for the state vector?
- Restrict attention to time invariant linear systems
 \[\dot{x}(t) = Ax(t) + Bu(t) \]
 \[y(t) = Cx(t) + Du(t) \]
 and linear changes of coordinates
 \[\hat{x}(t) = Tx(t), \quad T \in \mathbb{R}^{n \times n}, \det(T) \neq 0 \]
- In the new coordinates we get another linear system
 \[\dot{\hat{x}}(t) = TAT^{-1}\hat{x}(t) + TBu(t) \]
 \[y(t) = CT^{-1}\hat{x}(t) + Du(t) \]
- Could be useful, transformed system may be simpler
Solution of state space equations

• Only autonomous systems for the time being

\[\dot{x}(t) = f(x(t)), \quad y(t) = h(x(t)) \]

• Non-autonomous systems essentially the same, formal mathematics more complicated

• What is the “solution” of the system?
 – Where do we start? Say \(x(t_0) = x_0 \in \mathbb{R}^n \), at time \(t_0 \in \mathbb{R} \)
 – How long do we go? Say until some \(t_1 \geq t_0 \)

• Would like to find functions

\[x(\cdot) : [t_0, t_1] \rightarrow \mathbb{R}^n, \quad y(\cdot) : [t_0, t_1] \rightarrow \mathbb{R}^p \]

“satisfying” system equations for given conditions
Solution of state space equations

Definition: A pair of functions $x(\cdot): [t_0, t_1] \rightarrow \mathbb{R}^n, y(\cdot): [t_0, t_1] \rightarrow \mathbb{R}^p$ is a solution of the state space system over the interval $[t_0, t_1]$ starting at $x_0 \in \mathbb{R}^n$ if

1. $x(t_0) = x_0$
2. $\dot{x}(t) = f(x(t)), \ \forall t \in [t_0, t_1]$
3. $y(t) = h(x(t)), \ \forall t \in [t_0, t_1]$

• Note that $x(\cdot)$ implicitly defines $y(\cdot)$
• Therefore the difficulty is finding the solution to the differential equation
• Because the system is autonomous the starting time is also unimportant

Exercise: Show that $x(t)$ is a solution over the interval $[0, T]$ if and only if $x(t-t_0)$ is a solution over the interval $[t_0, t_0+T]$ starting at the same initial state.
Existence and uniqueness of solutions

- For autonomous systems the “only” thing we need to do is, given \(f(\cdot): \mathbb{R}^n \rightarrow \mathbb{R}^n, x_0 \in \mathbb{R}^n, T \geq 0 \), find a function \(x(\cdot): [0,T] \rightarrow \mathbb{R}^n \) such that

\[
x(0) = x_0 \quad \text{and} \quad \dot{x}(t) = f(x(t)), \quad \forall t \in [0,T]
\]

- Does such a function exist for some \(T \)?
- Is it unique, or can there be more than one?
- Do such functions exist for all \(T \)?
- Can we compute them even if they do?
- Clearly all these are important for physical models
- Unfortunately answer is sometimes “no”
Examples

• Illustrate potential problems on 1 dimensional systems
• **No solutions:** Consider the system

\[
\dot{x}(t) = -\text{sgn}(x(t)) = \begin{cases}
-1 & \text{if } x(t) \geq 0 \\
1 & \text{if } x(t) < 0
\end{cases}
\]

starting at \(x_0=0\). The system has no solution for any \(T\)

• **Many solutions:** Consider the system \(\dot{x}(t) = 3x(t)^{2/3}, x_0 = 0\). For any \(a \geq 0\) the following is a solution for the system

\[
x(t) = \begin{cases}
(t-a)^3 & \text{if } t \geq a \\
0 & \text{if } t < a
\end{cases}
\]

Exercise: Compute the solutions for \(x_0 = 1\) and \(x_0 = -1\). Are they defined for all \(T\)?

Exercise: Prove this is the case.
Examples

• **No solutions for \(T \) large:** Consider the system

\[
\dot{x}(t) = 1 + x(t)^2, x_0 = 0.
\]

• The solution is \(x(t) = \tan(t) \)

• So many things can go wrong!

• Fortunately many important systems are “well-behaved”

Exercise: Prove this. What happens at \(t=\pi/2 \)?

Definition: A function \(f : \mathbb{R}^n \to \mathbb{R}^n \) is called **Lipschitz** if there exists \(\lambda > 0 \) such that for all \(x, \hat{x} \in \mathbb{R}^n \)

\[
\|f(x) - f(\hat{x})\| \leq \lambda \|x - \hat{x}\|
\]
Lipschitz functions

- \(\lambda \) is called the Lipschitz constant of \(f \)
- Lipschitz functions are continuous but not necessarily differentiable
- All differentiable functions with bounded derivatives are Lipschitz
- Linear functions are Lipschitz

Exercise: Show that any other \(\lambda' \geq \lambda \) is also a Lipschitz constant

Exercise: Show that \(f(x) = |x| \) (\(x \) is a real number) is Lipschitz. What is the Lipschitz constant? Is the function differentiable?

Exercise: Show that \(f(x) = Ax \) is Lipschitz. What is a Lipschitz constant? Is the function differentiable?

Exercise: Show that the \(f(x) \) in the three pathological examples in p. 2.30-2.31 are not Lipschitz.
Existence and uniqueness

Theorem 2.2: If f is Lipschitz then the differential equation

$$\dot{x}(t) = f(x(t)),$$

with initial condition $x_0 \in \mathbb{R}^n$

has a unique solution $x(\bullet): [0, T] \to \mathbb{R}^n$ for all $T \geq 0$

and all $x_0 \in \mathbb{R}^n$.

- So state space systems defined by Lipschitz vector fields are well behaved:
 - They have unique solutions
 - Over arbitrarily long horizons
 - Wherever they start
Continuity

• Even if a unique solution exists, this does not mean we can find it.

• Sometimes we can: See the pathological examples above and linear systems (Notes 3).

• Usually have to resort to simulation on computer.

• Construct approximate numerical solution.

• It helps if solutions that start close remain close.

Theorem 2.3: If f is Lipschitz then the solutions starting at $x_0, \hat{x}_0 \in \mathbb{R}^n$ are such that for all $t \geq 0$

\[
\|x(t) - \hat{x}(t)\| \leq e^{\lambda t}\|x_0 - \hat{x}_0\|
\]

• Continuous dependence on initial condition.
Non-autonomous systems

• Formally, we would expect that given

\[f(\cdot): \mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R}_+ \rightarrow \mathbb{R}^n, x_0 \in \mathbb{R}^n, t_1 \geq t_0 \geq 0, u(\cdot): [t_0, t_1] \rightarrow \mathbb{R}^m \]

the solution would be a function \(x(\cdot): [t_0, t_1] \rightarrow \mathbb{R}^n \)

\[x(t_0) = x_0 \text{ and } \dot{x}(t) = f(x(t), u(t), t), \quad \forall t \in [t_0, t_1] \]

• This is OK if \(f \) is continuous in \(u \) and \(t \) and \(u(.) \) is continuous in \(t \)
• Unfortunately discontinuous \(u(.) \) are quite common
• Fortunately there is a fix, but the math is harder
• Roughly speaking need
 – \(f(x,u,t) \) Lipschitz in \(x \), continuous in \(u \) and \(t \)
 – \(u(t) \) continuous for “almost all” \(t \)

Exercise: What goes wrong in the case of discontinuity?
Signal- und Systemtheorie II
D-ITET, Semester 4

Notes 3: Continuous LTI systems in time domain

John Lygeros

Automatic Control Laboratory, ETH Zürich
WWW.CONTROL.ETHZ.CH
LTI systems in state space form

- General state space systems

\[
\begin{align*}
\frac{d}{dt} x(t) &= f(x(t), u(t), t) \\
y(t) &= h(x(t), u(t), t)
\end{align*}
\]

\[
\begin{bmatrix}
u_1 \\ u_2 \\ \vdots \\ u_m
\end{bmatrix} \in \mathbb{R}^m \quad \begin{bmatrix}
y_1 \\ y_2 \\ \vdots \\ y_p
\end{bmatrix} \in \mathbb{R}^p \quad \begin{bmatrix}
x_1 \\ x_2 \\ \vdots \\ x_n
\end{bmatrix} \in \mathbb{R}^n
\]

- LTI systems are linear and time invariant, i.e.

\[
\begin{align*}
\dot{x}(t) &= Ax(t) + Bu(t) \\
y(t) &= Cx(t) + Du(t)
\end{align*}
\]

\[
\begin{align*}
A &\in \mathbb{R}^{n \times n} \\
B &\in \mathbb{R}^{n \times m} \\
C &\in \mathbb{R}^{p \times n} \\
D &\in \mathbb{R}^{p \times m}
\end{align*}
\]
Block diagram representation
LTI systems in state space form

For LTI systems state space equations
- n coupled, first order, linear differential equations
- p linear algebraic equations
- Time invariant coefficients

\[
\begin{align*}
\dot{x}_1(t) &= a_{11}x_1(t) + \cdots + a_{1n}x_n(t) + b_{11}u_1(t) + \cdots + b_{1m}u_m(t) \\
\dot{x}_2(t) &= a_{21}x_1(t) + \cdots + a_{2n}x_n(t) + b_{21}u_1(t) + \cdots + b_{2m}u_m(t) \\
&\quad \vdots \\
\dot{x}_n(t) &= a_{n1}x_1(t) + \cdots + a_{nn}x_n(t) + b_{n1}u_1(t) + \cdots + b_{nm}u_m(t) \\
\end{align*}
\]

\[
\begin{align*}
y_1(t) &= c_{11}x_1(t) + \cdots + c_{1n}x_n(t) + d_{11}u_1(t) + \cdots + d_{1m}u_m(t) \\
y_2(t) &= c_{21}x_1(t) + \cdots + c_{2n}x_n(t) + d_{21}u_1(t) + \cdots + d_{2m}u_m(t) \\
&\quad \vdots \\
y_p(t) &= c_{p1}x_1(t) + \cdots + c_{pn}x_n(t) + d_{p1}u_1(t) + \cdots + d_{pm}u_m(t)
\end{align*}
\]

\[
A = \begin{bmatrix}
a_{11} & a_{12} & \cdots & a_{1n} \\
a_{21} & a_{22} & \cdots & a_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n1} & a_{n2} & \cdots & a_{nn}
\end{bmatrix}
\]

\[
B = \begin{bmatrix}
b_{11} & \cdots & b_{1m} \\
\vdots & \ddots & \vdots \\
b_{n1} & \cdots & b_{nm}
\end{bmatrix}
\]

\[
C = \begin{bmatrix}
c_{11} & \cdots & c_{1n} \\
\vdots & \ddots & \vdots \\
c_{p1} & \cdots & c_{pn}
\end{bmatrix}
\]

\[
D = \begin{bmatrix}
d_{11} & \cdots & d_{1m} \\
\vdots & \ddots & \vdots \\
d_{p1} & \cdots & d_{pm}
\end{bmatrix}
\]
Examples

<table>
<thead>
<tr>
<th>RLC Circuit</th>
<th>Amplifier Circuit</th>
</tr>
</thead>
</table>
| \[
\begin{align*}
C \frac{dv_C(t)}{dt} &= i_C(t) = i_L(t) \\
L \frac{di_L(t)}{dt} &= v_L(t) = v_1(t) - v_R(t) - v_C(t)
\end{align*}
\] | \[
\begin{align*}
\frac{dv_{C_1}(t)}{dt} &= -\frac{v_{C_1}(t)}{RC_1} + \frac{v_1(t)}{RC_1} \\
\frac{dv_{C_0}(t)}{dt} &= -\frac{v_{C_0}(t)}{R_0C_0} - \frac{v_{C_1}(t)}{R_1C_0} + \frac{v_1(t)}{R_1C_0}
\end{align*}
\] |

\[
\dot{x}(t) = \begin{bmatrix}
0 & 1 \\
-\frac{1}{L} & -\frac{R}{L}
\end{bmatrix} x(t) + \begin{bmatrix}
0 \\
\frac{1}{L}
\end{bmatrix} u(t)
\]

\[
\dot{x}(t) = \begin{bmatrix}
-\frac{1}{R_1C_1} & 0 \\
-\frac{1}{R_1C_0} & -\frac{1}{R_0C_0}
\end{bmatrix} x(t) + \begin{bmatrix}
\frac{1}{R_1C_0} \\
\frac{1}{R_1C_0}
\end{bmatrix} u(t)
\]

\[
y(t) = \begin{bmatrix}
0 & -1
\end{bmatrix} x(t)
\]

cf. pendulum

\[
\dot{x}(t) = \begin{bmatrix}
x_2(t) \\
-\frac{d}{m} x_2(t) - \frac{g}{l} \sin x_1(t)
\end{bmatrix}
\]
System solution

• Since system is time invariant, assume we are given
 – Initial condition $x_0 \in \mathbb{R}^n$
 – The input values $u(\bullet) : [0, T] \rightarrow \mathbb{R}^m$

• Compute the system solution $x(\bullet) : [0, T] \rightarrow \mathbb{R}^n$

 $x(0) = x_0$ and $\dot{x}(t) = Ax(t) + Bu(t), \ \forall t \in [0, T]$

• If we can do this, then output $y(\bullet) : [0, T] \rightarrow \mathbb{R}^p$

 $y(t) = Cx(t) + Du(t), \ \forall t \in [0, T]$

• For simplicity assume input continuous function of time
State solution

The system solution is

\[x(t) = \Phi(t)x_0 + \int_0^t \Phi(t - \tau)Bu(\tau) \, d\tau \]

where

\[\Phi(t) = e^{At} = I + At + \frac{A^2t^2}{2!} + \ldots + \frac{A^k t^k}{k!} + \ldots \in \mathbb{R}^{n \times n} \]

and the integral is computed element by element

(cf. Taylor series expansion: \(e^{at} = 1 + at + \frac{a^2t^2}{2!} + \ldots \) if \(a \in \mathbb{R} \))
Output solution

Simply combine state solution

\[x(t) = \Phi(t)x_0 + \int_0^t \Phi(t - \tau)Bu(\tau) \, d\tau \]

with output map

\[y(t) = Cx(t) + Du(t) \]

to obtain

\[y(t) = C\Phi(t)x_0 + \int_0^t C\Phi(t - \tau)Bu(\tau) \, d\tau + Du(t) \]
Fact 3.1: The state transition matrix is such that

1. \(\Phi(0) = I \)

2. \(\frac{d}{dt} \Phi(t) = A\Phi(t) \)

3. \(\Phi(-t) = [\Phi(t)]^{-1} \)

4. \(\Phi(t_1 + t_2) = \Phi(t_1)\Phi(t_2) \)

Exercise: Prove properties 1, 2 and that (harder) \(\Phi(t)\Phi(-t) = \Phi(-t)\Phi(t) = I \)

Exercise: By invoking the existence discussion from Notes 2, show property 4 (harder).
Proof of solution formula (sketch)

• Clearly

\[x(0) = \Phi(0)x_0 + \int_0^0 \Phi(0 - \tau)Bu(\tau)\,d\tau = x_0 \]

• To show that \(\dot{x}(t) = Ax(t) + Bu(t) \) use the Leibnitz formula for differentiating integrals

\[
\frac{d}{dt} \int_{g(t)}^{f(t)} l(t, \tau)\,d\tau = l(t, g(t)) \frac{d}{dt} g(t) \\
- l(t, f(t)) \frac{d}{dt} f(t) \\
+ \int_{g(t)}^{f(t)} \frac{\partial}{\partial t} l(t, \tau)\,d\tau
\]
Example: RC circuit

- Inputs: $u(t) = v_s(t)$
- States: $x(t) = v_C(t)$
- Initial condition: $x_0 = v_C(0)$
- State space equations

\[
\dot{x}(t) = -\frac{1}{RC}x(t) + \frac{1}{RC}u(t)
\]

- Response to step with amplitude $1V$

\[
x(t) = e^{-\frac{t}{RC}}x_0 + \left(1 - e^{-\frac{t}{RC}}\right)
\]

Exercise: Derive the state space equations. What are the “matrices” A and B?

Exercise: Derive the step response.
State solution structure

The solution consists of two parts:

\[x(t) = \Phi(t)x_0 + \int_0^t \Phi(t - \tau)Bu(\tau) d\tau \]

Total transition = Zero Input transition + Zero State transition

\[u(t) = 0 \forall t \Rightarrow x(t) = ZIT \quad \text{Linear function of initial state} \]

\[x_0 = 0 \Rightarrow x(t) = ZST \]

• Linear function of input
• Convolution integral
Superposition principle

- ZST linear in input trajectory
- ZST under input $u_1(\cdot):[0,t] \to \mathbb{R}^m$
 \[x_1(t) = \int_0^t \Phi(t-\tau)Bu_1(\tau) d\tau \]
- ZST under input $u_2(\cdot):[0,t] \to \mathbb{R}^m$
 \[x_2(t) = \int_0^t \Phi(t-\tau)Bu_2(\tau) d\tau \]
- ZST under input $u(\tau) = a_1u_1(\tau) + a_2u_2(\tau)$ for $\tau \in [0,t]$
 \[a_1, a_2 \in \mathbb{R}, \quad x(t) = \int_0^t \Phi(t-\tau)Bu(\tau) d\tau \]
 \[= \int_0^t \Phi(t-\tau)B(a_1u_1(\tau) + a_2u_2(\tau)) d\tau \]
 \[= a_1x_1(t) + a_2x_2(t) \]
Output solution structure

The solution consists of two parts:

\[y(t) = C\Phi(t)x_0 + C\int_0^t \Phi(t-\tau)Bu(\tau)\,d\tau + Du(t) \]

\[\begin{align*}
\text{Total Response} & = \text{Zero Input Response} + \text{Zero State Response} \\
\end{align*} \]

\[u(t) = 0 \forall t \Rightarrow y(t) = ZIR \quad \text{Linear function of initial state} \]

\[x_0 = 0 \Rightarrow y(t) = ZSR \quad \begin{align*}
& \cdot \text{Linear function of input} \\
& \cdot \text{cf. linear system definition in SS1} \\
& \cdot \text{Convolution integral} \\
\end{align*} \]
Zero input transition

• If we know the state transition matrix we can (in principle) compute all solutions of linear system
• Given matrix A would like to compute

$$\Phi(t) = e^{At} = I + At + \ldots + \frac{A^k t^k}{k!} + \ldots$$

• Many ways of doing this
 – Summing infinite series (in some rare cases!)
 – Using eigenvalues and eigenvectors (this set of notes)
 – Using the Laplace transform (later)
 – Numerically (later)
• Using eigenvalues at least two methods
 – Using Cayley Hamilton Theorem (Theorem 2.1)
 – Using eigenvalue decomposition (used here)
E-values and E-vectors: Rough idea

- Recall that (p. 2.15) $A w_i = \lambda_i w_i$
- ZIT
 \[
 \dot{x}(t) = Ax(t) \implies x(t) = \Phi(t)x(0)
 \]
 \[
 x(0) = w_i \implies \dot{x}(0) = Aw_i = \lambda_i w_i
 \]
- i.e. if we start on e-vector we stay on e-vector
- $\|x(t)\|$ increases/decreases depending on sign of λ
- E.g.

\[
\begin{align*}
 n &= 2, \lambda_1 < 0, \lambda_2 > 0 \\
\end{align*}
\]
Transition matrix computation

- Change of coordinates using matrix of eigenvectors
- Assume **matrix diagonalizable** (p.2.17)

\[AW = W\Lambda \Rightarrow A = W\Lambda W^{-1} \]

- Therefore (Fact 2.18)

\[\Phi(t) = e^{At} = We^{\Lambda t}W^{-1} \]

where

\[e^{\Lambda t} = \begin{bmatrix} e^{\lambda_1 t} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & e^{\lambda_n t} \end{bmatrix} \]

Exercise: Prove this

Exercise: Prove by induction that

\[A^k = W\Lambda^k W^{-1} \]
Example: RLC circuit

- Recall that (p. 1.14)

\[
\frac{d}{dt} \begin{bmatrix} v_C(t) \\ i_L(t) \end{bmatrix} = \begin{bmatrix} 0 & 1/C \\ -1/L & -R/L \end{bmatrix} \begin{bmatrix} v_C(t) \\ i_L(t) \end{bmatrix} + \begin{bmatrix} 0 \\ 1/L \end{bmatrix} v_s(t)
\]

- Set \(R=3, C=0.5, L=1 \)

\[
A = \begin{bmatrix} 0 & 2 \\ -1 & -3 \end{bmatrix}
\]

- Eigenvalues:

\(\lambda_1 = -1, \lambda_2 = -2 \)

- Eigenvectors:

\[
w_1 = \begin{bmatrix} 2 \\ -1 \end{bmatrix}, w_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}
\]
RLC circuit: Transition matrix

\[e^{At} = W e^{\Lambda t} W^{-1} = \begin{bmatrix} 2 & 1 \\ -1 & -1 \end{bmatrix} \begin{bmatrix} e^{-t} & 0 \\ 0 & e^{-2t} \end{bmatrix} \begin{bmatrix} 1 & 1 \\ -1 & -2 \end{bmatrix} \]

\[\Phi(t) = \begin{bmatrix} 2e^{-t} - e^{-2t} & 2e^{-t} - 2e^{-2t} \\ -e^{-t} + e^{-2t} & -e^{-t} + 2e^{-2t} \end{bmatrix} \]

Using Matlab:
>> A=[0 2;-1 -3];
>> [W,L]=eig(A)

\[W = \begin{bmatrix} 0.8944 & -0.7071 \\ -0.4472 & 0.7071 \end{bmatrix} \]

\[L = \begin{bmatrix} -1 & 0 \\ 0 & -2 \end{bmatrix} \]
Because w_1 and w_2 linearly independent they form a basis for \mathbb{R}^2 (p. 2.8).

Therefore all initial conditions can be written as

$$x(0) = a_1 w_1 + a_2 w_2$$

Therefore ZIT $\to 0$ for all initial conditions.
RLC circuit: Step input

ZST with \(u(t) = V \), for \(t \geq 0 \)

\[
x(t) = \int_{0}^{t} \Phi(t-\tau) Bu(\tau) \, d\tau \\
= \Phi(t) \int_{0}^{t} \Phi(-\tau) B V \, d\tau \\
= \left[-2e^{-t} + e^{-2t} + 1 \right] V \quad \xrightarrow[t \to \infty]{V} \left[\begin{array}{c} V \\ 0 \end{array} \right]
\]
Notes: Diagonalizable matrices

- For **diagonalizable matrices**, state transition matrix linear combination of terms of the form $e^{\lambda_i t}$
- Generally $\lambda_i = \sigma \pm j\omega \in \mathbb{C}, \sigma, \omega \in \mathbb{R}$
- So ZIT linear combination of terms of the form
 - 1 if $\lambda_i = 0$ \((\sigma = 0, \omega = 0) \)
 - $e^{\sigma t}$ if $\lambda_i = \sigma$ \((\sigma \neq 0, \omega = 0) \)
 - $\sin(\omega t)$ and $\cos(\omega t)$ if $\lambda_i = \pm j\omega$ \((\sigma = 0, \omega \neq 0) \)
 - $e^{\sigma t} \sin(\omega t)$ and $e^{\sigma t} \cos(\omega t)$ if $\lambda_i = \sigma \pm j\omega$ \((\sigma \neq 0, \omega \neq 0) \)
- Part of ZIT corresponding to $\lambda_i = \sigma \pm j\omega$
 - Constant if $\sigma = 0, \omega = 0$
 - Converges to 0 if $\sigma < 0$
 - Periodic if $\sigma = 0, \omega \neq 0$
 - Goes to infinity if $\sigma > 0$
Typical ZIT for diagonalizable matrices
Stability: Zero input transition

- Consider the system \(\dot{x}(t) = Ax(t) + Bu(t) \)
- Let \(x(t) \) be its ZIT \(x(t) = \Phi(t)x_0 = e^{At}x_0 \)

Definition: The system is called **stable** if for all \(\varepsilon > 0 \) there exists \(\delta > 0 \) such that

\[
\text{if } \|x_0\| \leq \delta \text{ then } \|x(t)\| \leq \varepsilon \text{ for all } t \geq 0.
\]

Otherwise the system is called **unstable.**

- i.e. if the state starts small it stays small (p. 2.4)
- or you can keep the state as close as you want to 0 by starting close enough
Asymptotic stability

Definition: The system is called *asymptotically stable* if it is stable and in addition

\[\|x(t)\| \to 0 \text{ as } t \to \infty \]

- i.e. not only do we stay close to 0 but also converge to it

Exercise: Show that \(\|x(t)\| \to 0 \) if and only if \(x(t) \to 0 \)

- Note that
 - Definitions do not require diagonalizable matrices
 - In fact we, will see that they also work for nonlinear systems (Notes 7)
Diagonalizable matrices

Theorem 3.1: System with diagonalizable A matrix is:
- Stable if and only if $\text{Re}[\lambda_i] \leq 0, \forall i$
- Asymptotically stable if and only if $\text{Re}[\lambda_i] < 0, \forall i$
- Unstable if and only if $\exists i : \text{Re}[\lambda_i] > 0$

- **Proof**: By inspection!
- Transition matrix linear combination of e^{λ_it}
 - $\text{Re}[\lambda_i] < 0, \forall i \Rightarrow$ for all initial conditions ZIT tends to zero
 - $\text{Re}[\lambda_i] \leq 0, \forall i \Rightarrow$ ZIT remains bounded and for some initial conditions is periodic (or constant)
 - $\exists i : \text{Re}[\lambda_i] > 0 \Rightarrow$ for some initial conditions ZIT tends to infinity
Phase plane plots

- For two state variables \((n=2)\)
- \(x_2(t)\) vs \(x_1(t)\) parameterized by \(t\) for different initial states

Trajectory plot
\[x_2(t)/x_1(t)\] vs \(t\)

Phase plane plot
\[x_2(t)\] vs \(x_1(t)\)

Stable node
\[w_1\]
\[w_2\]
Phase plane plots

- **Saddle point**
 - $\lambda_1 > 0, \lambda_2 < 0$
 - w_1
 - w_2

- **Unstable node**
 - $\lambda_1, \lambda_2 > 0$
 - w_1
 - w_2
Phase plane plots

\[\lambda_1 = \sigma + j\omega, \lambda_2 = \sigma - j\omega; \quad \sigma < 0 \]

Stable focus

\[\lambda_1 = \sigma + j\omega, \lambda_2 = \sigma - j\omega; \quad \sigma < 0 \]

Center

\[\lambda_1 = \pm j\omega, \lambda_2 = \pm j\omega \]
Phase plane plots

\[\lambda_1 = \sigma + j\omega, \lambda_2 = \sigma - j\omega; \sigma > 0 \]

Unstable focus

\[\lambda_1 = \sigma + j\omega, \lambda_2 = \sigma - j\omega; \sigma > 0 \]
Non-diagonalizable matrices (examples)

\[A_1 = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \Rightarrow e^{A_1t} = \begin{bmatrix} 1 & t \\ 0 & 1 \end{bmatrix} \]

Exercise: What are the eigenvalues of \(A_1 \) and \(A_2 \)?
What are the eigenvectors?
What goes wrong with their diagonalization?

\[A_2 = \begin{bmatrix} -1 & 1 \\ 0 & -1 \end{bmatrix} \Rightarrow e^{A_2t} = \begin{bmatrix} e^{-t} & te^{-t} \\ 0 & e^{-t} \end{bmatrix} \]

Exercise: Prove the formulas for the transition matrices

Exercise: Repeat the computations for the matrices

\[A_3 = \begin{bmatrix} -1 & 1 & 0 \\ 0 & -1 & 1 \\ 0 & 0 & -1 \end{bmatrix}, \ A_4 = \begin{bmatrix} -1 & 1 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix} \]
Non-diagonalizable matrices (general)

- Distinct e-values \rightarrow matrix diagonalizable (Fact 2.18)
- Assume some e-value repeated r times, $\lambda_1 = \lambda_2 = \ldots = \lambda_r = \sigma \pm j\omega$
- In general, ZIT linear combination of terms of the form

 $- 1, t, t^2, \ldots, t^{r-1}$ if $\sigma = 0, \omega = 0$
 $- e^{\sigma t}, te^{\sigma t}, \ldots, t^{r-1}e^{\sigma t}$ if $\sigma \neq 0, \omega = 0$
 $- \sin(\omega t), \cos(\omega t), t \sin(\omega t), \ldots, t^{r-1} \cos(\omega t)$ if $\sigma = 0, \omega \neq 0$
 $- e^{\sigma t} \sin(\omega t), e^{\sigma t} \cos(\omega t), \ldots, t^{r-1}e^{\sigma t} \cos(\omega t)$ if $\sigma \neq 0, \omega \neq 0$
- Can be shown using generalized eigenvectors and Jordan canonical form
Non-diagonalizable matrices (general)

Note that:

• If $\sigma < 0$,
 - $t^k e^{\sigma t}, t^k e^{\sigma t} \cos \omega t, t^k e^{\sigma t} \sin \omega t \xrightarrow{t \to \infty} 0$
 - Hence ZIT tends to zero (for some initial states)

• If $\sigma > 0$,
 - $t^k e^{\sigma t}, t^k e^{\sigma t} \cos \omega t, t^k e^{\sigma t} \sin \omega t \xrightarrow{t \to \infty} \infty$
 - Hence ZIT tends to infinity (for some initial states)

• If $\sigma = 0$,
 - $1, \cos \omega t, \sin \omega t$ remain bounded
 - $t^k, t^k \cos \omega t, t^k \sin \omega t \xrightarrow{t \to \infty} \infty$ for $k \geq 1$
 - ZIT may remain bounded or tend to infinity
 - Cannot tell just by looking at e-values
Non-diagonalizable matrices: Stability

Theorem 3.2: The system is:
- Asymptotically stable if and only if $\text{Re}[\lambda_i] < 0 \ \forall i$
- Unstable if $\exists i: \text{Re}[\lambda_i] > 0$

- Subtle differences with diagonalizable case
 - Asymptotic stability condition the same
 - Instability condition sufficient but not necessary

- Reason is that if $\forall i \ \text{Re}[\lambda_i] \leq 0$ but $\exists i \ \text{Re}[\lambda_i] = 0$ then stability not determined by e-values alone.
 - ZIT may remain bounded for all initial conditions
 - ZIT may go to infinity for some initial conditions
 - If matrix non-diagonalizable, but no e-value with $\text{Re}[\lambda_i] = 0$ is repeated then Theorem 3.1 still applies
Zero state transition: Dirac function

- Can be thought of as a function of time which is
 - Infinite at $t=0$
 - Zero everywhere else
 - Satisfies $\int_{-\infty}^{\infty} \delta(t) = 1$

- Can be thought of as the limit as $\varepsilon \to 0$ of (among others)

\[
\delta(t) = \begin{cases}
\infty & \text{if } t = 0 \\
0 & \text{if } t \neq 0
\end{cases}
\]

\[
\delta_\varepsilon(t) = \begin{cases}
0 & \text{if } t < 0 \\
\frac{1}{\varepsilon} & \text{if } 0 \leq t < \varepsilon \\
0 & \text{if } t \geq \varepsilon
\end{cases}
\]
Impulse transition \(h(t) \) \((n=m=1)\)

- \(n = m = 1 \Rightarrow x(t) \in \mathbb{R}, u(t) \in \mathbb{R} \)

\[
\dot{x}(t) = ax(t) + bu(t), \quad a \in \mathbb{R}, b \in \mathbb{R}
\]

- State impulse transition \(h(t) \) is ZST \((x_0 = 0)\) for \(u(t) = \delta(t) \)

\[
h(t) = \int_0^t \Phi(t - \tau)B\delta(\tau)d\tau
\]

\[
= e^{at}\int_0^t e^{-a\tau} b\delta(\tau) d\tau = e^{at} b
\]

Exercise: Show that impulse transition also ZIT for appropriate \(x_0 \)

- General ZST convolution of impulse transition with input

\[
x(t) = \int_0^t \Phi(t - \tau)Bu(\tau)d\tau = \int_0^t e^{a(t-\tau)}bu(\tau)d\tau
\]

\[
= \int_0^t h(t - \tau)u(\tau) d\tau = (h \ast u)(t)
\]
Example: RC circuit (p. 3.11)

• For the RC circuit: \(A = -\frac{1}{RC} \in \mathbb{R}, B = \frac{1}{RC} \in \mathbb{R} \)

\[
\Phi(t) = e^{-\frac{t}{RC}}
\]

• Impulse transition

\[
h(t) = \Phi(t)b = \frac{1}{RC}e^{-\frac{t}{RC}}
\]

• Unit step response: ZST with

\[
u(t) = \begin{cases}
1 & t \geq 0 \\
0 & t < 0
\end{cases} \quad \Rightarrow x(t) = \int_{0}^{t} h(t - \tau) \cdot 1 \cdot d\tau = \left(1 - e^{-\frac{t}{RC}} \right)
\]
Impulse transition $H(t)$ (general)

- For general n, m impulse transition given by matrix

$$H(t) = \begin{bmatrix}
 h_{11}(t) & \ldots & h_{1m}(t) \\
 \vdots & \ddots & \vdots \\
 h_{n1}(t) & \ldots & h_{nm}(t)
\end{bmatrix} = \Phi(t)B \in \mathbb{R}^{n \times m}$$

- $h_{ij}(t)$ equal to $x_i(t)$ when
 - $x(0) = 0$
 - $u_j(t) = \delta(t), u_k(t) = 0 \quad k \neq j$

- Again, ZST convolution of input with impulse transition

$$x(t) = (H \ast u)(t)$$

Integral computed element by element
Output impulse response $K(t)$

- Usually interested in input-output behavior
- Output impulse response: output solution to
 - Input $\delta(t)$
 - Initial state $x(0) = 0$
- Combine impulse transition formula and output map, output impulse response given by

$$K(t) = C\Phi(t)B + D\delta(t) \in \mathbb{R}^{p \times m}$$

and output ZSR to input $u(t)$ is

$$y(t) = (K \ast u)(t)$$

Exercise: Verify this using the formula on p. 3.8
Stability with inputs: Zero state transition

• Consider the system \(\dot{x}(t) = Ax(t) + Bu(t) \)
• Zero state transition \(x(t) = \int_0^t \Phi(t - \tau)Bu(\tau) \, d\tau \)

Theorem 3.3: Assume that \(\text{Re}[\lambda_i] < 0 \quad \forall i \). Then there exists \(\alpha \geq 0 \) such that ZST, \(x(t) \), satisfies
\[
\|u(t)\| \leq M \quad \forall t \geq 0 \quad \Rightarrow \quad \|x(t)\| \leq \alpha M \quad \forall t \geq 0
\]
If in addition \(u(t) \xrightarrow{t \to \infty} 0 \) then \(x(t) \xrightarrow{t \to \infty} 0 \).

• So small inputs lead to small states. If in addition the input goes to zero, so does the state
• Asymptotic stability needed, \(\text{Re}[\lambda_i] \leq 0 \) not enough
Stability with inputs: Full response

\[
\begin{align*}
\dot{x}(t) &= Ax(t) + Bu(t) \\
y(t) &= Cx(t) + Du(t)
\end{align*}
\]

- Complete response = ZIR + ZSR
- If \(\text{Re}[\lambda_i] < 0 \ \forall i \)
 - ZIT/ZIR and ZST/ZSR small if input and \(x(0) \) small
 - Bounded input, bounded state (BIBS) property
 - Bounded input, bounded output (BIBO) property
 - ZIT/ZIR and ZST/ZSR tend to 0 if input tends to 0
 - Hence output tends to 0 if input tends to 0
Signal- und Systemtheorie II
D-ITET, Semester 4

Notes 4: Energy, Controllability, Observability

John Lygeros

Automatic Control Laboratory, ETH Zürich
WWW.CONTROL.ETHZ.CH
Wien oscillator: Circuit

\[i_{0}(t) = 0 \Rightarrow i_{1}(t) = i_{0}(t) \]

\[
\begin{align*}
 i_{1}(t) &= \frac{v_{C_{2}}(t)}{R} \\
 i_{0}(t) &= \frac{v_{C_{2}}(t) - v_{0}(t)}{(k-1)R} \\
 v_{0}(t) &= k v_{C_{2}}(t)
\end{align*}
\]

\[v_{in} = 0 \Rightarrow v_{R}(t) = v_{C_{2}}(t) \Rightarrow \]
Wien oscillator: State equations

- Linear circuit
- State Variables: $v_{c_1}(t), v_{c_2}(t)$

$$x(t) = \begin{bmatrix} v_{c_1}(t) \\ v_{c_2}(t) \end{bmatrix} \in \mathbb{R}^2$$

- Input Variable: none (autonomous)

$$\frac{dx(t)}{dt} = A \begin{bmatrix} v_{c_1}(t) \\ v_{c_2}(t) \end{bmatrix}$$

- KCL:
 $$\frac{v_{c_2}(t)}{R_2} + C_1 \frac{dv_{c_1}(t)}{dt} + C_2 \frac{dv_{c_2}(t)}{dt} = 0$$

- KVL:
 $$v_{c_2}(t) - v_{c_1}(t) - R_1 C_1 \frac{dv_{c_1}(t)}{dt} - k v_{c_2}(t) = 0$$
Wien oscillator: Response

- For simplicity set \(R_1 = R_2 = R, C_1 = C_2 = C \)
- Autonomous system (ZIT)
- Stability determined by sign of the real part of eigenvalues
- Eigenvalues are the roots of the characteristic polynomial

\[
\text{det}(\lambda I - A) = 0 \Rightarrow \lambda^2 + \frac{3-k}{RC} \lambda + \frac{1}{(RC)^2} = 0
\]

- For second order polynomials

\[
a \lambda^2 + b \lambda + c = 0
\]
the sign of real part of roots determined by signs of \(a, b, c \)
- This is NOT true for higher order polynomials, we need Hurwitz test
Wien oscillator: Stability

\[\forall i, \text{Re} \left[\lambda_i \right] < 0 \Leftrightarrow \exists i, \text{Re} \left[\lambda_i \right] > 0 \]

- Asymp. stable
- Unstable

Exercise: Prove this

- \(a, b, c \) same sign
- \(a, b, c \) not same sign

\[\Rightarrow \text{Degenerate case} \]

- \(k < 3 \Leftrightarrow \forall i, \text{Re} \left[\lambda_i \right] < 0 \Rightarrow \text{Response goes to 0} \]

- \(k = 3 \Leftrightarrow \lambda_i = \pm \frac{j}{RC} \Leftrightarrow \text{Response oscillates with frequency } \omega=1/RC \)

- \(k > 3 \Leftrightarrow \text{Re} \left[\lambda_i \right] > 0 \Rightarrow \text{Response goes to infinity (generally)} \)

\[[75x40 to 159x61] \]

\[[86x499] \]
Wien oscillator: Eigenvalue locus

- Eigenvalues are $\lambda = \frac{k - 3 \pm \sqrt{(k-1)(k-5)}}{2RC}$

- Real and negative $0 < k \leq 1$
- Complex, negative real part $1 < k < 3$
- Imaginary $k = 3$
- Complex, positive real part $3 < k < 5$
- Real and positive $k \geq 5$
- Roots real and equal $k = 1$ or 5 (critical damping)

Exercise: Show this

Exercise: Simulate the Wien oscillator for $k = 0.5, 2, 3, 4, 6$ and plot x_1 vs. x_2

Exercise: Plot locus of the e-values as k goes from 0 to infinity (in matlab)
System energy

- For the Wien oscillator
 \[E(t) = \frac{1}{2} C_1 v_{c_1}^2(t) + \frac{1}{2} C_2 v_{c_2}^2(t) = \frac{1}{2} x(t)^T \begin{bmatrix} C_1 & 0 \\ 0 & C_2 \end{bmatrix} x(t) \]
- Quadratic function of the state \(E(t) = \frac{1}{2} x(t)^T Q x(t) \)
- Matrix \(Q \)
 - Symmetric \((Q=Q^T)\) (in this case diagonal)
 - Positive definite \(Q > 0 \), i.e. \(x^T Q x > 0 \) \(\forall x \neq 0 \)
- Any quadratic with \(Q \) that satisfies these properties serves as an “energy like” function
- Example: Coordinate change
 \(\hat{x}(t) = Tx(t) \) for \(T \) invertible

Exercise: Find \(\hat{Q} \) such that
\[E(t) = \frac{1}{2} \hat{x}(t)^T \hat{Q} \hat{x}(t) \]
System power

- Instantaneous change in energy

\[P(t) = \frac{dE(t)}{dt} = \frac{\dot{x}^T(t)Qx(t)}{2} + \frac{x^T(t)Q\dot{x}(t)}{2} \]

\[= \frac{\left(x(t)^T A^T + u(t)^T B^T\right)Qx(t)}{2} + \frac{x(t)^T Q\left(Ax(t) + Bu(t)\right)}{2} \]

\[= \frac{x(t)^T \left(A^T Q + QA\right)x(t)}{2} + \frac{\left(u(t)^T B^T Qx(t) + x(t)^T QBu(t)\right)}{2} \]

- For autonomous systems or when \(u = 0 \) (ZIT)

\[P(t) = \frac{x(t)^T \left(A^T Q + QA\right)x(t)}{2} = -\frac{x(t)^T Rx(t)}{2}, \quad \text{for } R = -\left(A^T Q + QA\right) \]
System power

- Power also a quadratic of the state
- Matrix R is symmetric
- If it is positive definite $R > 0$, i.e. $x^T R x > 0 \quad \forall x \neq 0$
 then energy decreases all the time
- Natural to assume that in this case system is stable

Exercise: Show R is symmetric

Exercise: Compute power for the Wien oscillator.
For which values of k is R positive definite?

Theorem 4.1: The eigenvalues of A have negative real part if and only if for all $R = R^T > 0$ there exists a unique $Q = Q^T > 0$
 such that $A^T Q + QA = -R$
Lyapunov equation

- Lyapunov equation

\[A^T Q + QA = -R \]

- \(A \) and \(R \) known, linear equation in unknown \(Q \)
- Can be re-written as

\[\hat{A}q = r \]

- Because \(Q \) and \(R \) symmetric \(n(n+1)/2 \) equations in \(n(n+1)/2 \) unknowns
- Fact 2.11 \(\rightarrow \) equation has:
 - Unique solution if \(\hat{A} \) non-singular
 - Multiple solutions or no solutions if \(\hat{A} \) singular
Lypunov functions

• Linear version of Lyapunov Theorem (Notes 7)
• Possible to solve $A^T Q + QA = -R$ efficiently (e.g. Matlab)
• For any $R = R^T > 0$ solving for Lyapunov equation for unknown Q allows us to determine stability of $\dot{x}(t) = Ax(t)$
 – Unique positive definite solution \rightarrow Asymptotically stable
 – No solution, multiple solutions \rightarrow Not asymptotically stable
 – Non-positive definite solution

• Resulting energy-like function $V : \mathbb{R}^n \rightarrow \mathbb{R}$

\[
V(x) = \frac{1}{2} x^T Q x
\]

known as Lyapunov function

Exercise: Why is Lyapunov equation linear? Is Lyapunov function linear?
Input-State-Output relations

- Investigate the effect of
 - Input on state
 - State on output
- Two fundamental questions
 1. Can I use inputs to “drive” state to desired value
 2. Can I infer what the state is by looking at output
- Answer to 1. \(\rightarrow \) Controllability
- Answer to 2. \(\rightarrow \) Observability
- Answers hidden in structure of matrices \(A, B, \) and \(C \)
Controllability

• Consider a linear system

\[
\frac{dx}{dt}(t) = Ax(t) + Bu(t)
\]
\[
y(t) = Cx(t) + Du(t)
\]

Definition: The system is called **controllable** over \([0, t]\) if for all \(x(0) = x_0 \in \mathbb{R}^n\) initial conditions and all terminal \(x_1 \in \mathbb{R}^n\) conditions there exists an input
\[
u(\cdot): [0, t] \rightarrow \mathbb{R}^m\] such that \(x(t) = x_1\)
Observations

- In other words: For any x_0, x_1 we can find $u(\cdot) : [0, t] \rightarrow \mathbb{R}^m$ such that

$$x_1 = e^{At}x_0 + \int_0^t e^{A(t-\tau)}Bu(\tau)d\tau$$

- Observations:
 - Input can drive the state from x_0 to x_1 in time t, but not necessarily keep it at x_1 afterwards
 - Input to state relation, outputs play no role and can be ignored for the time being
 - Definition generalizes to other systems (nonlinear, time varying, etc.) but more care is needed
Observations

Fact 4.1: The system is controllable over $[0, t]$ if and only if for all $x_1 \in \mathbb{R}^n$ there exists an input $u(\bullet) : [0, t] \rightarrow \mathbb{R}^m$ such that $x(t) = x_1$ starting at $x(0) = 0$

Proof:
Exercise: Prove “only if” part
If: To drive the system from $x(0) = x_0$ to $x(t) = x_1$ use input that drives it from $\tilde{x}(0) = 0$ to $\tilde{x}(t) = x_1 - e^{At}x_0$

Fact 4.2: The system is controllable over $[0, t]$ if and only if for all $x_0 \in \mathbb{R}^n$ there exists an input $u(\bullet) : [0, t] \rightarrow \mathbb{R}^m$ such that $x(t) = 0$ starting at $x(0) = x_0$

Proof:
Exercise: Prove “only if” part
If: To drive the system from $x(0) = x_0$ to $x(t) = x_1$ use input that drives it from $\tilde{x}(0) = x_0 - e^{-At}x_1$ to $\tilde{x}(t) = 0$
Controllability gramian

Given time t, define controllability gramian

$$W_C(t) = \int_{0}^{t} e^{A\tau} BB^T e^{A^T\tau} d\tau \in \mathbb{R}^{n \times n}$$

Exercise: Show that $W_C(t) = W_C^T(t) \geq 0$

Fact 4.3: The system is controllable over $[0, t]$ if and only if $W_C(t)$ is invertible

Proof: If. Drive system from $x_0 \in \mathbb{R}^n$ to $x_1 \in \mathbb{R}^n$ in time t.

By Fact 4.1, assume $x_0=0$ and select

$$u(\tau) = B^T e^{A^T(t-\tau)}W_C(t)^{-1}x_1, \quad \tau \in [0, t]$$

Exercise: Complete the “if” part
Controllability gramian

Only if: If \(W_C(t) \) is not invertible then (Fact 2.12, 2.17) there exists \(z \in \mathbb{R}^n \) with \(z \neq 0 \) such that

\[
W_C(t)z = 0 \iff z^T W_C(t)z = 0 \iff \int_0^t z^T e^{A\tau} BB^T e^{A^T\tau} z \, d\tau = 0
\]

\[
\iff \int_0^t \left\| z^T e^{A\tau} B \right\|^2 \, d\tau = 0 \iff z^T e^{A\tau} B = 0 \quad \text{for all } \tau \in [0,t]
\]

Therefore \(z^T x(t) = \int_0^t z^T e^{A(t-\tau)} Bu(\tau) \, d\tau = 0 \)

and only \(x(t) \) orthogonal to \(z \) can be reached from \(x(0)=0 \). By Fact 4.1.1, the system is not controllable.
Controllability test

Define the controllability matrix

\[P = [B \ AB \ A^2B \cdots A^{n-1}B] \in \mathbb{R}^{n \times n}m \]

Theorem 4.2: The system is controllable over \([0, t]\) if and only if the rank of \(P\) is \(n\)

The rank of \(P\) is at most \(n\) since it has \(n\) rows (Fact 2.5)

Proof: We know that the system is controllable over \([0, t]\) if and only if \(W_C(t)\) is invertible. \(W_C(t)\) is invertible if and only if for \(z \in \mathbb{R}^n\)

\[W_C(t)z=0 \Leftrightarrow z=0 \]

(else \(W_C(t)\) has 0 as an eigenvalue, Fact 2.17). If we can show

\[W_C(t)z=0 \Leftrightarrow P^Tz=0 \]

this would imply \(P^T\) has rank \(n\) if and only if \(W_C(t)\) is invertible.
Controllability test: Proof

As in the proof of Fact 4.3 we can show that
\[W_C(t)z = 0 \iff B^T e^{A^T \tau} z = 0 \quad \text{for all } \tau \in [0, t] \]

By Taylor series, the last part holds if and only if \(B^T e^{A^T \tau} z \) and all its derivatives at \(\tau = 0 \) are equal to zero, in other words
\[
B^T e^{A^T \tau} z \bigg|_{\tau=0} = B^T z = 0 \\
\frac{d}{d\tau} B^T e^{A^T \tau} z \bigg|_{\tau=0} = B^T A^T z = 0
\]
and so on, until
\[
\frac{d^{n-1}}{d\tau^{n-1}} B^T e^{A^T \tau} z \bigg|_{\tau=0} = B^T (A^{n-1})^T z = 0
\]

Higher derivatives (involving \(A^n, A^{n+1}, \text{etc.} \)) are then automatically zero by the Cayley-Hamilton Theorem 2.1. Summarizing
\[W_C(t)z = 0 \iff P^T z = 0 \]
and the system is controllable if and only if \(P \) has rank \(n \).
Example: OpAmp circuit

Ideal amplifier:

\[i_1(t) = i_0(t) + i_C(t) + i_L(t) \]

\[\Rightarrow \frac{v_{in}(t)}{R_1} = \frac{v_C(t)}{R_0} + C \frac{dv_C(t)}{dt} + i_L(t) \]

\[\Rightarrow \frac{dv_C(t)}{dt} = - \frac{1}{C} i_L(t) - \frac{1}{R_0 C} v_C(t) + \frac{1}{R_1 C} v_{in}(t) \]

\[L \frac{di_L(t)}{dt} = v_C(t) \Rightarrow \frac{di_L(t)}{dt} = \frac{v_C(t)}{L} \]

\[v_0(t) = -v_C(t) \]
Example: OpAmp circuit

The state space matrixes are:

\[
A = \begin{bmatrix}
0 & 1/L \\
-1/C & -1/R_0C
\end{bmatrix},
B = \begin{bmatrix}
0 \\
1/R_1C
\end{bmatrix},
C = \begin{bmatrix}
0 & 1
\end{bmatrix}
\]

Note that the input affects only one of the two states directly. It can use this state to influence the second state through the dynamics encoded in the matrix \(A \).

\[
P = \begin{bmatrix}
0 & \frac{1}{R_1LC} \\
\frac{1}{R_1C} & -\frac{1}{R_0R_1C^2}
\end{bmatrix}
\]

\[\implies \det(P) = \frac{-1}{R_1^2LC^2} \neq 0\]
Observations

- Easy test for controllability
- Requires matrix multiplications and rank test, instead of integration of matrix exponential
- Proof of Theorem 4.2 implies the following

Corollary 4.1: The set of $x_1 \in \mathbb{R}^n$ for which $\exists u(\cdot) : [0, t] \to \mathbb{R}^m$ such that $x(t) = x_1$ starting at $x(0) = 0$ is equal to $\text{Range}(P)$

Fact 4.4: $W_C(t)$ is invertible for some $t > 0$ if and only if it is invertible for all $t > 0$.

- Roughly speaking, if the system is controllable can get from any state to any other state as fast as we like
- The faster we go, the more the “energy” and the bigger the inputs we will need

Exercise: Prove Fact 4.4
Minimum energy inputs

Consider as the “energy” of the input the quantity

\[\int_0^t u(\tau)^T u(\tau) d\tau = \int_0^t \|u(\tau)\|^2 d\tau \]

In our example of p. 4.20

\[\int_0^t \|u(\tau)\|^2 d\tau = R_1 \int_0^t v_{in}(\tau)i_1(\tau) d\tau = R_1 \cdot (\text{energy provided by } v_{in}) \]

Theorem 4.2: Assume that the system is controllable. Given \(x_1 \in \mathbb{R}^n \) and \(t > 0 \), the input that drives the system from \(x(0) = 0 \) to \(x(t) = x_1 \) and has the minimum energy is given by

\[u_m(\tau) = B^T e^{A^T(t-\tau)} W_C(t)^{-1} x_1, \quad \text{for } \tau \in [0, t] \]
Minimum energy inputs: Proof

Proof: In the proof of Fact 4.3 we saw that the proposed $u_m(.)$ drives the system from $x(0)=0$ to $x(t)=x_1$. Its energy is

$$\int_0^t u_m(\tau)^T u_m(\tau) d\tau = \int_0^t x_1^T W_C(t)^{-1} e^{A(t-\tau)} BB^T e^{A^T(t-\tau)} W_C(t)^{-1} x_1 d\tau$$

$$= x_1^T W_C(t)^{-1} \left(\int_0^t e^{A(t-\tau)} BB^T e^{A^T(t-\tau)} d\tau \right) W_C(t)^{-1} x_1 = x_1^T W_C(t)^{-1} x_1$$

To show that this energy is minimum, consider any other input $u(.)$ that drives the state from $x(0)=0$ to $x(t)=x_1$. $u(.)$ can be written as $u(\tau) = u_m(\tau) + \hat{u}(\tau)$. So its energy will be

$$\int_0^t u(\tau)^T u(\tau) d\tau = \int_0^t (u_m(\tau) + \hat{u}(\tau))^T (u_m(\tau) + \hat{u}(\tau)) d\tau$$

$$= \int_0^t (u_m(\tau)^T u_m(\tau) + u_m(\tau)^T \hat{u}(\tau) + \hat{u}(\tau)^T u_m(\tau) + \hat{u}(\tau)^T \hat{u}(\tau)) d\tau$$
Minimum energy inputs: Proof

But \(x(t) = \int_0^t e^{A(t-\tau)} Bu(\tau) d\tau = \int_0^t e^{A(t-\tau)} B(u_m(\tau) + \hat{u}(\tau)) d\tau \)

\[= \int_0^t e^{A(t-\tau)} Bu_m(\tau) d\tau + \int_0^t e^{A(t-\tau)} B\hat{u}(\tau) d\tau = x_1 + \int_0^t e^{A(t-\tau)} B\hat{u}(\tau) d\tau \]

Since \(x(t) = x_1 \), we have that \(\int_0^t e^{A(t-\tau)} B\hat{u}(\tau) d\tau = 0 \)

and \(\int_0^t u_m(\tau)^T \hat{u}(\tau) d\tau = \int_0^t \hat{u}(\tau)^T u_m(\tau) d\tau = \int_0^t x_1^T W_C(t)^{-1} e^{A(t-\tau)} B\hat{u}(\tau) d\tau = 0 \)

Therefore

\[\int_0^t u(\tau)^T u(\tau) d\tau = x_1^T W_C(t)^{-1} x_1 + \int_0^t \hat{u}(\tau)^T \hat{u}(\tau) d\tau \geq \int_0^t u_m(\tau)^T u_m(\tau) d\tau \]
Observability

\[\frac{dx}{dt}(t) = Ax(t) + Bu(t) \quad x \in \mathbb{R}^n, u \in \mathbb{R}^m, y \in \mathbb{R}^p \]

\[y(t) = Cx(t) + Du(t) \]

Definition: The system is called **observable** over \([0, t]\) if given \(u(\cdot) : [0, t] \to \mathbb{R}^m\) and \(y(\cdot) : [0, t] \to \mathbb{R}^p\) we can uniquely determine the value of \(x(\cdot) : [0, t] \to \mathbb{R}^n\)

- Again time of observation, \(t\), will turn out to play no role
- Inputs play little role, just carried along
- Generalizations (to e.g. non-linear systems) possible, but care is needed
Initial state observability

- Recall that $x(t) = e^{At} x_0 + \int_0^t e^{A(t-\tau)} Bu(\tau) d\tau$

- Therefore to infer $x(\cdot) : [0, t] \rightarrow \mathbb{R}^n$ given $u(\cdot) : [0, t] \rightarrow \mathbb{R}^m$
 it suffices to infer the initial condition $x(0) = x_0$

- Assume that two initial conditions, x_0 and \hat{x}_0, under the same input $u(\cdot) : [0, t] \rightarrow \mathbb{R}^m$ lead to the same output $y(\cdot) : [0, t] \rightarrow \mathbb{R}^p$, i.e. $\forall \tau \in [0, t]$

$$Ce^{At} x_0 + C\int_0^\tau e^{A(\tau-s)} Bu(s) ds + Du(\tau) = Ce^{At} \hat{x}_0 + C\int_0^\tau e^{A(\tau-s)} Bu(s) ds + Du(\tau)$$

- Then $Ce^{At} (x_0 - \hat{x}_0) = 0$, for all $\tau \in [0, t]$

- $x \in \mathbb{R}^n$ such that $Ce^{At} x = 0 \ \forall \tau \in [0, t]$ called **unobservable**
Unobservable states

- $x \in \mathbb{R}^n$ unobservable if and only if $Ce^{A\tau}x = 0$ for all $\tau \in [0, t]$
- Note that if $x=0$ then $Ce^{A\tau}x = 0$, so $x=0$ is an unobservable state
- System is observable if and only if $x=0$ is the only unobservable state
- In this case the initial state x_0 is uniquely determined by the zero input response since

\[
Ce^{A\tau}x_0 = Ce^{A\tau}\hat{x}_0 \text{ for all } \tau \in [0, t] \\
\iff Ce^{A\tau}(x_0 - \hat{x}_0) = 0 \text{ for all } \tau \in [0, t] \\
\iff (x_0 - \hat{x}_0) \text{ unobservable} \\
\implies (x_0 - \hat{x}_0) = 0 \implies x_0 = \hat{x}_0
\]

Exercise: Show that the unobservable states form a subspace
Observability

• Note that two initial conditions that under the same input lead to the same output differ by an unobservable state

• By a Taylor series argument \(Ce^{A\tau} x = 0 \) for all \(\tau \in [0, t] \) if and only if all its derivatives at \(\tau = 0 \) equal to 0

\[
Ce^{A\tau} x \bigg|_{\tau=0} = Cx = 0, \quad \frac{d}{dt} Ce^{A\tau} x \bigg|_{\tau=0} = CAx = 0, \ldots
\]

\[
\frac{d^{n-1}}{d\tau^{n-1}} Ce^{A\tau} x \bigg|_{\tau=0} = CA^{n-1} x = 0
\]

• By the Cayley Hamilton Theorem 2.1, if \(CA^k x = 0 \) for \(k=0, 1, \ldots, n-1 \) then \(CA^k x = 0 \) for all \(k>n-1 \)

Exercise: Show this
Observability

- Therefore a state x is unobservable if and only if $Qx = 0$

\[
Q = \begin{bmatrix}
C \\
CA \\
\vdots \\
CA^{n-1}
\end{bmatrix} \in \mathbb{R}^{np \times n}
\]

- If Q is full rank then the only unobservable state is 0
- In this case, system is observable since

\[
Ce^{At}(x_0 - \hat{x}_0) = 0 \text{ for all } \tau \in [0,t] \iff x_0 = \hat{x}_0
\]

Theorem 4.3: The system is observable over $[0, t]$ if and only if the rank of the matrix Q is n
Example: OpAmp circuit (p. 4.20)

- \[Q = \begin{bmatrix} 0 & -1 \\ 1/C & 1/R_0C \end{bmatrix} \Rightarrow \det(Q) = \frac{1}{C} \neq 0 \text{ therefore it is observable} \]

- We are only measuring one of the two states directly
- We can infer the value of the other state by its effect on the measured state through the dynamics encoded in \(A \)
- Roughly speaking use measured state + all its derivatives to deduce the value of the unmeasured states
Observability Gramian

One can also construct and observability gramian

\[W_O(t) = \int_{0}^{t} e^{A^T \tau} C^T C e^{A \tau} d\tau \in \mathbb{R}^{n \times n} \]

Exercise: Show that \(W_O(t) = W_O^T(t) \geq 0 \)

Fact 4.5: The system is observable over \([0, t]\) if and only if \(W_O(t) \) is invertible. If the system is observable over some \([0, t]\) then it is also observable over all \([0, t']\)

Notes
- Checking the rank of matrix \(Q \) is easier
- Rank of \(Q \) at most \(n \) (\(n \) columns)
- Time of observation is immaterial

Corollary 4.2: Set of unobservable states equal to \(\text{Null}(Q) \)
Output derivative interpretation

Consider differentiating \(y(t)\) along \(\dot{x}(t) = Ax(t) + Bu(t)\)

\[\begin{aligned}
y(t) &= Cx(t) + Du(t) \\
\dot{y}(t) &= C\dot{x}(t) + D\dot{u}(t) = CAx(t) + CBu(t) + D\dot{u}(t) \\
\ddot{y}(t) &= CA^2 x(t) + CABu(t) + CB\ddot{u}(t) + D\dddot{u}(t)
\end{aligned}\]

\[
\begin{bmatrix}
y(0) \\
\dot{y}(0) \\
\vdots \\
y^{(n-1)}(0)
\end{bmatrix}
=
\begin{bmatrix}
 C & & & \\
 CA & & & \\
 \vdots & & & \\
 CA^{n-1} & & &
\end{bmatrix}
\begin{bmatrix}
x(0) \ \\
\end{bmatrix}
+
\begin{bmatrix}
 D & 0 & \cdots & 0 \\
 CB & D & \cdots & 0 \\
 CAB & CB & \cdots & 0 \\
 CA^{n-2} B & CA^{n-3} B & \cdots & D
\end{bmatrix}
\begin{bmatrix}
 u(0) \\
 \ddot{u}(0) \\
 \vdots \\
 u^{(n-1)}(0)
\end{bmatrix}
\]

\[Y = Qx(0) + KU \quad Y \in \mathbb{R}^{np}, \quad K \in \mathbb{R}^{np \times nm}, \quad U \in \mathbb{R}^{nm}\]
Output derivative interpretation

\[Y = Qx(0) + KU \]

- System of linear equations to be solved for \(x(0) \)
- If \(p=1 \), \(Q \in \mathbb{R}^{n \times n} \) has rank \(n \) \(\Rightarrow Q \) invertible
 \[x(0) = Q^{-1}(Y - KU) \]
- If \(p>1 \), more equations than unknowns, least squares solution. If \(Q \) has rank \(n \), pseudo-inverse (Fact 2.14)
 \[x(0) = \left(Q^T Q \right)^{-1} Q^T (Y - KU) \]
But …

- Differentiating measurements is a bad idea
- Noise gets amplified
- Intuition: Sinusoidal signal corrupted by small amplitude, high frequency noise
 \[y(t) = a \sin(\omega t) + b \sin(\omega_n t) \quad b \ll a, \omega_n \gg \omega \]
- Signal-to-noise ratio: \(\text{SNR} = \frac{a}{b} \gg 1 \)
 \[\dot{y}(t) = \omega a \cos(\omega t) + \omega_n b \cos(\omega_n t) \Rightarrow \text{SNR} = \frac{a\omega}{b\omega_n} \ll \frac{a}{b} \]
 \[\ddot{y}(t) = -\omega^2 a \sin(\omega t) - \omega_n^2 b \sin(\omega_n t) \Rightarrow \text{SNR} = \frac{a\omega^2}{b\omega_n^2} \ll \frac{a\omega}{b\omega_n} \]
- Derivative of signal soon becomes useless
Observers

• Instead of differentiating, build a “filter”
• Progressively construct estimate of the state \(\tilde{x}(t) \in \mathbb{R}^n \)
• Start with some (arbitrary) initial guess \(\tilde{x}(0) \in \mathbb{R}^n \)
• Measure \(y(t) \) and \(u(t) \)
• Update estimate according to
 \[
 \frac{d\tilde{x}}{dt}(t) = A\tilde{x}(t) + Bu(t) + L \left[y(t) - C\tilde{x}(t) - Du(t) \right]
 \]
 • Mimic evolution of true state, plus correction term
• Gain matrix \(L \)
• Error dynamics
 \[
e(t) = x(t) - \tilde{x}(t) \Rightarrow \dot{e}(t) = (A - LC)e(t)
 \]
Observers

Theorem 4.4: If the system is observable, then L can be chosen such that eigenvalues of $(A-LC)$ have negative real parts.

- In this case error system is asymptotically stable
- Error goes to zero $e(t) \xrightarrow{t \to \infty} 0$
- State estimate converges to true state $\hat{x}(t) \xrightarrow{t \to \infty} x(t)$
- Convergence arbitrarily quick by choice of L
- In presence of noise “transients” may be bad
- Kalman filter: Optimal trade-off for L if
 - State and measurement equations corrupted by noise
 - System linear and noises Gaussian
Kalman decomposition

There exists change of coordinates $T \in \mathbb{R}^{n \times n}$ invertible such that:

$$\hat{x}(t) = Tx(t) = \begin{bmatrix} \hat{x}_1(t) \\ \hat{x}_2(t) \\ \hat{x}_3(t) \\ \hat{x}_4(t) \end{bmatrix} \leftarrow \text{controllable & observable}$$

$$\begin{bmatrix} \hat{A}_{11} & 0 & \hat{A}_{13} & 0 \\ \hat{A}_{21} & \hat{A}_{22} & \hat{A}_{23} & \hat{A}_{24} \\ 0 & 0 & \hat{A}_{33} & 0 \\ 0 & 0 & \hat{A}_{43} & \hat{A}_{44} \end{bmatrix}$$

$$\hat{B} = TB = \begin{bmatrix} \hat{B}_1 \\ \hat{B}_2 \end{bmatrix}$$

$$\begin{bmatrix} \hat{C}_1 & 0 & \hat{C}_3 & 0 \end{bmatrix}$$

$$\hat{C} = CT^{-1}$$
Kalman decomposition

\[
\begin{bmatrix}
\hat{A}_{11} & 0 \\
\hat{A}_{21} & \hat{A}_{22}
\end{bmatrix},
\begin{bmatrix}
\hat{B}_1 \\
\hat{B}_2
\end{bmatrix}
\]

controllable,

\[
\begin{bmatrix}
\hat{A}_{11} & \hat{A}_{13} \\
0 & \hat{A}_{33}
\end{bmatrix},
\begin{bmatrix}
\hat{C}_1 \\
\hat{C}_3
\end{bmatrix}
\]

observable
Stabilizability and detectability

Definition: The system is **detectable** if all eigenvalues of \(\hat{A}_{22} \) and \(\hat{A}_{44} \) in the Kalman decomposition have negative real part.

Can design observer for observable part with overall observation error decaying to zero

\[
\begin{bmatrix}
\hat{A}_{11} & \hat{A}_{13} \\
0 & \hat{A}_{33}
\end{bmatrix}
\begin{bmatrix}
\hat{C}_1 \\
\hat{C}_3
\end{bmatrix}
\]

Definition: The system is **stabilizable** if all eigenvalues of \(\hat{A}_{33} \) and \(\hat{A}_{44} \) in Kalman decomposition have negative real part.

Can design controller for controllable part which ensures overall system asymptotically stable

\[
\begin{bmatrix}
\hat{A}_{11} & 0 \\
\hat{A}_{21} & \hat{A}_{22}
\end{bmatrix}
\begin{bmatrix}
\hat{B}_1 \\
\hat{B}_2
\end{bmatrix}
\]
Laplace Transform

- Convert time function \(f(t) \) to a complex variable function \(F(s) \)

\[
f : \mathbb{R} \rightarrow \mathbb{R} \quad \quad F : \mathbb{C} \rightarrow \mathbb{C}
\]

\[
f(t) \xleftrightarrow{L} F(s) \quad \quad F(s) = L\{f(t)\} = \int_{0}^{\infty} f(t)e^{-st} \, dt
\]

- Recall that we assume that \(f(t)=0 \) for all \(t<0 \) (p. 0.22)
- Can also be defined for matrix valued functions

\[
f : \mathbb{R} \rightarrow \mathbb{R}^{n \times m} \quad \quad F : \mathbb{C} \rightarrow \mathbb{C}^{n \times m}
\]

by taking the integral element by element
Laplace Transform: Properties

Assumption: The function $f(t)$ is such that the integral can be defined, i.e. $f(t)e^{-st} \xrightarrow{t \to \infty} 0$ “quickly enough”

- **Linearity** $L\left\{ a_1 f(t) + a_2 g(t) \right\} = a_1 F(s) + a_2 G(s)$

- **s shift** $L\left\{ e^{-at} f(t) \right\} = F(s + a)$

- **Time derivative** $L\left\{ \frac{d}{dt} f(t) \right\} = sF(s) - f(0)$

- **Convolution** $L\left\{ (f * g)(t) \right\} = F(s)G(s)$

Exercise: Prove these properties using the definition

Recall discussion on p. 0.22
Laplace Transform: Useful functions

A. Dirac function \(L\{\delta(t)\} = 1 \)

B. Step function \(L\{1\} = \frac{1}{s} \)

C. Exponential function \(L\{e^{-at}\} = \frac{1}{s + a} \)

D. Sinusoidal functions
 \[
 L\{\sin(\omega t)\} = \frac{\omega}{s^2 + \omega^2}
 \]
 \[
 L\{\cos(\omega t)\} = \frac{s}{s^2 + \omega^2}
 \]

Exercise: Prove C using the \(s \) shift property. Prove D using C. Prove B using A and the time derivative property.

Initial value theorem: \(\lim_{t \to 0} f(t) = \lim_{s \to \infty} sF(s) \)

Final value theorem: \(\lim_{t \to \infty} f(t) = \lim_{s \to 0} sF(s) \)

Whenever all limits exist
Inverse Laplace Transform

- Defined as an integral
- Laplace transforms of interest here will be proper, rational functions
 - Ratio of two polynomials in s
 - Degree of numerator less than or equal to degree of denominator
- In this case use partial fractions
- Example:

$$L^{-1}\left\{\frac{1}{s^2 + 3s + 2}\right\} = L^{-1}\left\{\frac{1}{(s+1)(s+2)}\right\} = L^{-1}\left\{\frac{1}{s+1} - \frac{1}{s+2}\right\}$$

$$= L^{-1}\left\{\frac{1}{s+1}\right\} - L^{-1}\left\{\frac{1}{s+2}\right\} = e^{-t} - e^{-2t}$$

Exercise: Compute the Laplace transform of:
- $f(t) = t, f(t) = t^n$,
- $f(t) = te^{-at}$,
- $f(t) = e^{-at} \cos(\omega t)$,
- $g(t) = \frac{d^2}{dt^2} f(t)$,
- $f(t) = \sin(\omega t + \theta)$
Back to LTI systems

Time domain:

\[
\frac{dx(t)}{dt} = Ax(t) + Bu(t) \\
y(t) = Cx(t) + Du(t)
\]

\[x(t) \in \mathbb{R}^n, u(t) \in \mathbb{R}^m, y(t) \in \mathbb{R}^p, t \in \mathbb{R}\]

Take Laplace Transform

\[
L\left\{\frac{dx(t)}{dt}\right\} = L\left\{Ax(t) + Bu(t)\right\} \implies sX(s) - x(0) = AX(s) + BU(s)
\]

Laplace domain:

\[
X(s) = (sI - A)^{-1}x_0 + (sI - A)^{-1}BU(s) \\
Y(s) = CX(s) + DU(s)
\]

\[X(s) \in \mathbb{C}^n, U(s) \in \mathbb{C}^m, Y(s) \in \mathbb{C}^p, s \in \mathbb{C}\]
Comparison with time domain

- Time domain solution

\[x(t) = e^{At}x_0 + \int_0^t e^{A(t-\tau)}Bu(\tau)\,d\tau \]

- Take Laplace transform

\[
L\{x(t)\} = L\{e^{At}\}x_0 + L\left\{\int_0^t e^{A(t-\tau)}Bu(\tau)\,d\tau\right\}
\]

\[\Rightarrow X(s) = L\{e^{At}\}x_0 + L\{e^{At}\}BU(s) \]

- Comparing

\[L\{e^{At}\} = (sI - A)^{-1} \in \mathbb{C}^{n\times n} \]
Example (p. 3.18)

For \(R=3, \ C=0.5, \ L=1 \)

\[
A = \begin{bmatrix}
0 & 2 \\
-1 & -3
\end{bmatrix}
\Rightarrow (sI - A) = \begin{bmatrix}
s & -2 \\
1 & s + 3
\end{bmatrix}
\]

Laplace transform of state transition matrix

\[
(sI - A)^{-1} = \frac{1}{s^2 + 3s + 2} \begin{bmatrix}
s + 3 & 2 \\
-1 & s
\end{bmatrix}
\]
Example: Transition Matrix

\[\Phi(t) = L^{-1} \left\{ (sI - A)^{-1} \right\} = L^{-1} \left\{ \frac{1}{s^2 + 3s + 2} \begin{bmatrix} s + 3 & 2 \\ -1 & s \end{bmatrix} \right\} \]

\[= L^{-1} \left\{ \begin{bmatrix} \frac{s + 3}{s^2 + 3s + 2} & \frac{2}{s^2 + 3s + 2} \\ \frac{-1}{s^2 + 3s + 2} & \frac{s}{s^2 + 3s + 2} \end{bmatrix} \right\} \]

\[= L^{-1} \left\{ \begin{bmatrix} \frac{2}{s + 1} - \frac{1}{s + 2} & \frac{2}{s + 1} - \frac{2}{s + 2} \\ \frac{-1}{s + 1} + \frac{1}{s + 2} & \frac{-1}{s + 1} + \frac{2}{s + 2} \end{bmatrix} \right\} \]

\[\Phi(t) = \begin{bmatrix} 2e^{-t} - e^{-2t} & 2e^{-t} - 2e^{-2t} \\ -e^{-t} + e^{-2t} & -e^{-t} + 2e^{-2t} \end{bmatrix} \]

As before! (p. 3.19)
Example: Step transition (p. 3.21)

ZST with input \(v_s(t) = V \) for \(t \geq 0 \) (recall that \(v_s(t) = 0 \) for \(t < 0 \))

Laplace transform \(V_s(s) = V/s \)

\[
X(s) = (sI - A)^{-1} BV_s(s) = \begin{bmatrix} 2 \\ \frac{2}{s(s+1)(s+2)} \\ \frac{s}{s(s+1)(s+2)} \end{bmatrix} V
\]

\[
= \begin{bmatrix} \frac{1}{s} - \frac{2}{s+1} + \frac{1}{s+2} \\ \frac{1}{s+1} - \frac{1}{s+2} \end{bmatrix} V
\]

No need to compute entire \((sI-A)^{-1}\), just second column

\[
x(t) = L^{-1} \{X(s)\} = \begin{bmatrix} -2e^{-t} + e^{-2t} + 1 \\ e^{-t} - e^{-2t} \end{bmatrix} V
\]
Example: Step transition

\[X(s) = \begin{bmatrix}
\frac{2}{s(s+1)(s+2)} \\
\frac{s}{s(s+1)(s+2)} \\
\frac{s}{s(s+1)(s+2)}
\end{bmatrix} \]

Initial value theorem \[x(0) = \lim_{t \to 0} x(t) = \lim_{s \to \infty} sX(s) \]

\[x(0) = \lim_{s \to \infty} \begin{bmatrix}
\frac{2}{(s+1)(s+2)} \\
\frac{s}{(s+1)(s+2)} \\
\frac{s}{(s+1)(s+2)}
\end{bmatrix} V = \begin{bmatrix} 0 \\
0
\end{bmatrix} \] (ZST)

Final value theorem \[\lim_{t \to \infty} x(t) = \lim_{s \to 0} \begin{bmatrix}
\frac{2}{(s+1)(s+2)} \\
\frac{s}{(s+1)(s+2)} \\
\frac{s}{(s+1)(s+2)}
\end{bmatrix} \]

\[V = \begin{bmatrix} V \\
0
\end{bmatrix} \]
Example: Sinusoidal input

ZST with input \(v_s(t) = V \sin(t) \)

Laplace transform \(V_s(s) = \frac{V}{s^2 + 1} \)

\[
X(s) = (sI - A)^{-1} BV_s(s) = \begin{bmatrix} \frac{2}{(s^2 + 1)(s + 1)(s + 2)} \\ \frac{s}{(s^2 + 1)(s + 1)(s + 2)} \end{bmatrix} V
\]

\[
V_C(s) = X_1(s) = \left(\frac{-3s + 1}{5(s^2 + 1)} + \frac{1}{s + 1} - \frac{2}{5(s + 2)} \right)V
\]

\[
v_C(t) = \frac{3V}{5} \cos(t) + \frac{V}{5} \sin(t) + Ve^{-t} - \frac{2}{5}Ve^{-2t}
\]

External input response

Eigenvalue response
Example: Sinusoidal input

- The system is stable, so as $t \to \infty$

$$Ve^{-t} - \frac{2}{5}Ve^{-2t} \to 0$$

Transient solution

$$v_C(t) \to -\frac{3V}{5}\cos(t) + \frac{V}{5}\sin(t)$$

Steady state solution

- In general, for stable systems with sinusoidal input steady state solution is also sinusoidal with
 - Same frequency as input
 - Amplitude and phase determined by system matrices
Transfer function

- Consider ZSR $X(s) = (sI - A)^{-1}BU(s)$

 $$Y(s) = CX(s) + DU(s)$$

 $$Y(s) = \left(C(sI - A)^{-1}B + D\right)U(s)$$

- Transfer function

\[
G(s) = C(sI - A)^{-1}B + D \quad \in \mathbb{C}^{p \times m}
\]

- Summarizes system input-output behavior $Y(s) = G(s)U(s)$

- In the RLC example
 - If we measure $y = i_L$
 \[
 C = \begin{bmatrix} 0 & 1 \end{bmatrix}, \quad D = 0 \Rightarrow G(s) = \frac{s}{(s + 1)(s + 2)}
 \]

 - If we measure $y = v_C$
 \[
 C = \begin{bmatrix} 1 & 0 \end{bmatrix}, \quad D = 0 \Rightarrow G(s) = \frac{2}{(s + 1)(s + 2)}
 \]
Transfer function structure

• System called
 – Single input, single output (SISO) if \(m=p=1 \)
 – Multi-input, multi-output (MIMO) if \(m \) or \(p > 1 \)

• SISO \(\Rightarrow \) \(B, C^T \) vectors of dimension \(n \), \(D \) a real number

\[
G(s) = \frac{\text{Adj}(sI - A)B}{\det(sI - A)} + D = \frac{\text{Adj}(sI - A)B + D \det(sI - A)}{\det(sI - A)} \in \mathbb{C}
\]

• All entries are rational functions of \(s \)
• For SISO systems

\[
G(s) = \frac{(s - z_1)(s - z_2)\cdots(s - z_k)}{(s - p_1)(s - p_2)\cdots(s - p_n)} \in \mathbb{C}
\]
Proper and strictly proper transfer function

- Consider SISO system described by rational \(G(s) \)
- Transfer function is called proper if
 numerator degree \(\leq \) denominator degree

Fact 5.1: SISO transfer functions arising from state space descriptions of LTI systems are always proper

- Transfer function is called strictly proper if
 numerator degree < denominator degree

Fact 5.2: SISO transfer functions arising from state space descriptions of LTI systems are strictly proper if and only if \(D=0 \)

- Input affects output only through system dynamics
Proper and strictly proper transfer function

\[G(s) = \frac{(s - z_1)(s - z_2) \cdots (s - z_k)}{(s - p_1)(s - p_2) \cdots (s - p_n)} \in \mathbb{C} \]

- Proper \(\rightarrow k \leq n \), strictly proper \(\rightarrow k < n \)
- If \(G(s) \) is strictly proper, expanding polynomials

\[G(s) = \frac{b_1 s^{n-1} + b_2 s^{n-2} + \cdots + b_n}{s^n + a_1 s^{n-1} + a_2 s^{n-2} + \cdots + a_n} \]

- Some \(b_i \) may be zero
- If no pole-zero cancellations the denominator is the characteristic polynomial of \(A \)
- i.e. poles are the eigenvalues of \(A \)
- For simplicity we will mostly consider SISO, strictly proper transfer functions in the rest of these notes
Transfer function and impulse response

- SISO systems, ZSR \(y(t) = C \int_{0}^{t} e^{A(t-\tau)} Bu(\tau) d\tau + Du(t) \)

- Output impulse response: ZSR with \(u(t) = \delta(t) \)
 \[K(t) = Ce^{At} B + D\delta(t) \quad (c.f. \text{Notes 3}) \]

- Taking Laplace transform
 \[L\{K(t)\} = L\left\{Ce^{At} B + D\delta(t)\right\} = C(sI - A)^{-1} B + D \]

- Transfer function is Laplace transform of output impulse response

- ZSR: impulse response-input convolution \(y(t) = (K*u)(t) \)

\[Y(s) = L\{(K*u)(t)\} = L\{K(t)\}U(s) = G(s)U(s) \]
Transfer function and stability

- From our knowledge of time domain solutions
 - If poles are distinct system is
 - Asymptotically stable if and only if $\text{Re}[p_i] < 0, \forall i$
 - Stable if and only if $\forall i \text{ Re}[p_i] \leq 0$
 - Unstable if and only if $\exists i : \text{Re}[p_i] > 0$
 - If poles are repeated system is
 - Asymptotically stable if and only if $\text{Re}[p_i] < 0, \forall i$
 - Unstable if $\exists i : \text{Re}[p_i] > 0$
 - If $\forall i \text{ Re}[p_i] \leq 0$ and $\exists i \text{ Re}[p_i] = 0$ system may be stable or unstable, depending on partial fraction expansion
 (cf. “depending on eigenvectors” of matrix A, Notes 3)
 - Provided there are no pole zero cancellations
Block diagrams

\[G_1(s) \rightarrow G_2(s) \Leftrightarrow G_2(s)G_1(s) \]

\[G_1(s) \rightarrow G_2(s) \rightarrow \oplus \rightarrow G_2(s)G_1(s) \Leftrightarrow G_2(s)+G_1(s) \]

\[G_1(s) \rightarrow G_2(s) \rightarrow \oplus \rightarrow \oplus \rightarrow [1+G_1(s)G_2(s)]^{-1}G_1(s) \]

Caution: MIMO transfer functions in general matrices!

5.20
$Y(s) = [1 + G(s)K_2(s)K_3(s)]^{-1}G(s)K_2(s)K_1(s)U(s)$

- In the SISO case: Composition or rational transfer functions is also a rational transfer function
- Properties of “closed loop” system studied using the same tools

Exercise: In the SISO case, show that if $G(s)$ strictly proper, $K_1(s)$, $K_2(s)$, $K_3(s)$ proper then closed loop transfer function is strictly proper
Frequency response

- In RLC example, steady state response to sinusoidal input is sinusoidal
- More generally consider proper, stable SISO system with transfer function $G(s)$
- Apply $u(t) = \sin(\omega t)$
- Output settles to sinusoid $y(t) = K \sin(\omega t + \phi)$ with
 - The same frequency, ω
 - Amplitude $K = |G(j\omega)| = \sqrt{\text{Re}[G(j\omega)]^2 + \text{Im}[G(j\omega)]^2}$
 - Phase $\phi = \angle G(j\omega) = \tan^{-1}\left(\frac{\text{Im}[G(j\omega)]}{\text{Re}[G(j\omega)]}\right)$
- Shown by partial fraction expansion of $Y(s) = G(s) \frac{\omega}{s^2 + \omega^2}$
Frequency response

- Response of system to sinusoids at different frequencies called the frequency response
- Frequency response important because
 - Sinusoids are common inputs
 - Directly related to any other input by Fourier transform
 - Frequency response tells us a lot about system behavior
 - E.g. Will it be stable under various interconnections?
- Frequency response usually summarized graphically
 - Bode plots: Log-log plot $|G(j\omega)|$ vs. ω, lin-log plot $\angle G(j\omega)$ vs. ω
 - Nyquist plot: $G(j\omega)$ in polar coordinates, parameterized by ω
 - Nichols chart: Log-lin plot $|G(j\omega)|$ vs. $\angle G(j\omega)$, parameterized by ω
Bode plots (bode.m)

Pair of plots, x-axis the same \(\log(\omega) \) (in rad/sec), y-axes \(20\log(\|G(j\omega)\|) \) (in dB) and \(\angle G(j\omega) \) (in degrees)

\[
G(s) = \frac{2}{(s + 1)(s + 2)}
\]

RLC example (p. 5.14)

\[
G(s) = \frac{s}{(s + 1)(s + 2)}
\]
Nyquist plot (nyquist.m)

Plot of $\text{Im}[G(j\omega)]$ vs. $\text{Re}[G(j\omega)]$ parameterized by ω

$$G(s) = \frac{2}{(s + 1)(s + 2)}$$

RLC example (p. 5.14)

$$G(s) = \frac{s}{(s + 1)(s + 2)}$$
Resonance

- Appears in second order systems (two poles)
- Bode magnitude plot has maximum at some frequency
- Sinusoidal inputs around this frequency get amplified
- Important consequences for performance
- Second order systems very common in practice
- Example: Simplified suspension model

\[
M\ddot{x}(t) + d\dot{x}(t) + kx(t) = -f(t)
\]

\[
\frac{X(s)}{F(s)} = -\frac{1}{Ms^2 + ds + k}
\]
Resonance

• Second order transfer functions of interest look like

\[G(s) = \frac{K \omega_n^2}{s^2 + 2\zeta \omega_n s + \omega_n^2}, \quad \omega_n > 0 \]

• For suspension example: \(\omega_n = \sqrt{\frac{k}{M}}, \quad \zeta = \frac{d}{2\sqrt{km}}, \quad K = -\frac{1}{k} \)

• Frequency response

\[G(j\omega) = \frac{K \omega_n^2}{(\omega_n^2 - \omega^2) + j(2\zeta \omega_n \omega)} \]

\[|G(j\omega)| = \frac{K \omega_n^2}{\sqrt{\left(\omega_n^2 - \omega^2\right)^2 + \left(2\zeta \omega_n \omega\right)^2}} \]

\[\angle G(j\omega) = -\tan^{-1}\left(\frac{2\zeta \omega_n \omega}{\omega_n^2 - \omega^2}\right) \]
Resonance

1. For stability need $\zeta \geq 0$
2. For $\zeta \geq 1$ poles real (over-damped system)
3. For $\zeta = 1$ poles real and equal (critical damping)
4. For $0 < \zeta < 1$ poles complex (under-damped system)
5. For $\zeta = 0$ poles imaginary (undamped system)

6. For $\zeta \geq \frac{1}{\sqrt{2}}$ magnitude Bode plot decreasing in ω

7. For $0 \leq \zeta < \frac{1}{\sqrt{2}}$ magnitude Bode plot has a maximum

\[\omega = \omega_n \sqrt{1 - 2\zeta^2} \quad \text{and} \quad |G(j\omega)| = \frac{K}{2\zeta \sqrt{1 - \zeta^2}} \]

Exercise: Verify 1-5
Exercise: Take the derivative of $|G(j\omega)|$ to verify 6-7
Example: AFM Resonances
Transfer function realization

• Time domain description \rightarrow unique transfer function
\[
\begin{align*}
\frac{dx}{dt}(t) &= Ax(t) + Bu(t) \\
y(t) &= Cx(t) + Du(t)
\end{align*}
\]
\[\rightarrow G(s) = C(sI - A)^{-1}B + D\]

• Transfer function \rightarrow unique time domain description??

\[G(s) = \frac{(s - z_1)(s - z_2)\cdots(s - z_k)}{(s - p_1)(s - p_2)\cdots(s - p_n)} \quad \Rightarrow \quad \begin{cases}
\frac{dx}{dt}(t) = Ax(t) + Bu(t) \\
y(t) = Cx(t) + Du(t)
\end{cases}\]

• Given $G(s)$, choice of A, B, C, D such that $C(sI - A)^{-1}B + D = G(s)$ known as a realization of $G(s)$

• Clearly not unique, e.g. coordinate change $\hat{x} = Tx$, $\det(T) \neq 0$
Realization: SISO, strictly proper system

- SISO, strictly proper system

\[G(s) = \frac{b_1 s^{n-1} + b_2 s^{n-2} + \cdots + b_n}{s^n + a_1 s^{n-1} + a_2 s^{n-2} + \cdots + a_n} \]

\[\dot{x}(t) = \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \\ -a_n & -a_{n-1} & -a_{n-2} & \cdots & -a_1 \end{bmatrix} x(t) + \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 1 \end{bmatrix} u(t) \]

\[y(t) = \begin{bmatrix} b_n & b_{n-1} & b_{n-2} & \cdots & b_1 \end{bmatrix} x(t) \]

Controllable canonical form

\[\dot{x}(t) = \begin{bmatrix} 0 & 0 & \cdots & -a_n \\ 1 & 0 & \cdots & -a_{n-1} \\ 0 & 1 & \cdots & -a_{n-2} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & -a_1 \end{bmatrix} x(t) + \begin{bmatrix} b_n \\ b_{n-1} \\ b_{n-2} \\ \vdots \\ b_1 \end{bmatrix} u(t) \]

\[y(t) = \begin{bmatrix} 0 & 0 & \cdots & 1 \end{bmatrix} x(t) \]

Observable canonical form

Exercise: Show that both the controllable and the observable canonical forms are realizations of \(G(s) \)
Uncontrollable and unobservable systems

\[
\begin{align*}
\dot{x}(t) &= \begin{bmatrix} -1 & 1 \\ 0 & 1 \end{bmatrix} x(t) + \begin{bmatrix} 1 \\ 0 \end{bmatrix} u(t), \\
y(t) &= \begin{bmatrix} 1 & 0 \end{bmatrix} x(t)
\end{align*}
\]

1. In both cases transfer function \(G(s) = \frac{1}{s+1} \)

2. Same as \(\dot{x}(t) = -x(t) + u(t), \ y(t) = x(t) \in \mathbb{R} \)

3. Original state space system unstable

4. Transfer function poles have negative real parts!

5. Pole-zero cancellation of term corresponding to uncontrollable/unobservable part

6. Can be shown in general using Kalman decomposition

Exercise: Show points 1-5
In summary

• Transfer function alternative system description to state space
• Closely related, not equivalent
• Advantages
 + Coordinate independent
 + Easier to manipulate for system composition
 + Easier to compute response to “complicated” inputs
 + Immediate connection to steady state sinusoidal response
 + May also work for systems that do not have state space description (e.g. delay elements)
• Disadvantages
 – Less natural in terms of physical laws
 – Used mostly for ZSR
 – May contain less information than state space description
 – Unobservable and uncontrollable parts lost
Sampled Data Systems

- Computers operate on bit streams
- Value and time quantization
 1. Variables can take finitely many values
 2. Operations performed at fixed "clock" period
Sampled Data Systems

• In “embedded” computational systems digital computer has to interact with analog environment.
 – Measurements of physical quantities processed by computers
 – Decisions of computer applied to physical system

• Requires transformation of real valued signals of real time to discrete valued signals of discrete time and vice-versa
 – Analog to digital conversion (A/D or ADC)
 – Digital to analog conversion (D/A or DAC)
Sampled Data Systems

• Usually value quantization is quite accurate.
• Here we ignore value quantization, we concentrate on time quantization.

• Assume:
 – “ADC” → sample every T
 – “DAC” → zero order hold
Sampled Data Systems

\[
\dot{x}(t) = \bar{A}x(t) + \bar{B}u(t)
\]
\[
y(t) = \bar{C}x(t) + \bar{D}u(t)
\]
Sampled Data Linear Systems

How does linear system with sampling and zero order hold look like from computer?

\[
\dot{x}(t) = \bar{A}x(t) + \bar{B}u(t) \quad \bar{A} \in \mathbb{R}^{n \times n} \quad \bar{B} \in \mathbb{R}^{n \times m}
\]
\[
y(t) = \bar{C}x(t) + \bar{D}u(t) \quad \bar{C} \in \mathbb{R}^{p \times n} \quad \bar{D} \in \mathbb{R}^{p \times m}
\]
\[
u(t) = u_k \quad \text{for all } t \in [kT, (k + 1)T)
\]
\[
y_k = y(kT)
\]

For \(t \in [kT, (k + 1)T) \)

\[
x(t) = e^{\bar{A}(t-kT)}x(kT) + \int_{kT}^{t} e^{\bar{A}(t-\tau)}\bar{B}u(\tau)d\tau
\]
Sampled Data Linear Systems

\begin{align*}
x((k+1)T) &= e^{AT}x(kT) + \left(\int_{kT}^{(k+1)T} e^{A((k+1)T-\tau)}Bd\tau \right)u_k \\
&= e^{AT}x(kT) + \left(\int_{0}^{T} e^{A(T-\tau)}Bd\tau \right)u_k \\
y(kT) &= \bar{C}x(kT) + \bar{D}u(kT)
\end{align*}

Exercise: Show that
\[\int_{kT}^{(k+1)T} e^{A((k+1)T-\tau)}Bd\tau = \int_{0}^{T} e^{A(T-\tau)}Bd\tau \]

Let \(x_k = x(kT) \), \(u_k = u(kT) \), \(y_k = y(kT) \). Then
\[x_{k+1} = Ax_k + Bu_k \]
\[y_k = Cx_k + Du_k \]

with \(A = e^{AT} \), \(B = \int_{0}^{T} e^{A(T-\tau)}Bd\tau \),
\[C = \bar{C}, \quad D = \bar{D} \]
Discrete Time Linear Systems

\[x_{k+1} = Ax_k + Bu_k \]
\[y_k = Cx_k + Du_k \]

Solution: Given \(\hat{x}_0 \in \mathbb{R}^n \) and \(u_k \in \mathbb{R}^m, k = 0,1,\ldots, N - 1 \) solution consists of two sequences \(x_k \in \mathbb{R}^n, k = 0,1,\ldots, N \) and \(y_k \in \mathbb{R}^p, k = 0,1,\ldots, N \) such that:

\[x_0 = \hat{x}_0 \]
\[x_{k+1} = Ax_k + Bu_k, \quad k = 0,1,\ldots, N - 1 \]
\[y_k = Cx_k + Du_k, \quad k = 0,1,\ldots, N \]

\[x_k \in \mathbb{R}^n, u_k \in \mathbb{R}^m, y \in \mathbb{R}^p \]
\[A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m} \]
\[C \in \mathbb{R}^{p \times n}, D \in \mathbb{R}^{p \times m} \]
Solution of Discrete Time Linear Systems

\[x_k = A^k \hat{x}_0 + \sum_{i=0}^{k-1} A^{k-i-1} Bu_i \]

ZIT

ZST

Exercise: Prove this by induction

ZST: Discrete time convolution of
- Input \(u_i \)
- State impulse response \(h_k = A^{k-1} B \)

\(y_k \) can easily be computed by:
\[y_k = C x_k + D u_k \]
Computation of solution

- Hard part is computation of A^k (c.f. e^{At})
- If matrix is diagonalizable

$$A = W \Lambda W^{-1} \Rightarrow A^k = W \Lambda^k W^{-1}$$

$$\Lambda^k = \begin{bmatrix}
\lambda_1^k & \ldots & 0 \\
\vdots & \ddots & \vdots \\
0 & \ldots & \lambda_n^k
\end{bmatrix}$$

Definition: The system is called **stable** if for all $\varepsilon > 0$ there exists $\delta > 0$ such that $\|x_0\| \leq \delta \Rightarrow \|x_k\| \leq \varepsilon$ for all $k = 0, 1, \ldots$. It is called **asymptotically stable** if in addition $\lim_{k \to \infty} \|x_k\| = 0$. A system that is not stable is called **unstable**.
Stability, diagonalizable matrices

- If matrix diagonalizable, A^k linear combination of λ_i^k

 - $\lambda_i = \sigma_i \pm j\omega_i, |\lambda_i| = \sqrt{\sigma_i^2 + \omega_i^2}$

 - $|\lambda_i| < 1 \Rightarrow |\lambda_i|^k \xrightarrow{k \to \infty} 0$

 - $|\lambda_i| = 1 \Rightarrow |\lambda_i|^k = 1 \forall k$

 - $|\lambda_i| > 1 \Rightarrow |\lambda_i|^k \xrightarrow{k \to \infty} \infty$

Exercise: Show that if \overline{A} is diagonalizable and $\forall i, \text{Re}[\overline{\lambda}_i] < 0$ then $A = e^{\overline{A}T}$ is diagonalizable and $\forall i, |\overline{\lambda}_i| < 1$.

Theorem 6.1: System with diagonalizable A matrix is:

- Stable if and only if $\forall i |\lambda_i| \leq 1$
- Asymptotically stable if and only if $\forall i |\lambda_i| < 1$
- Unstable if and only if $\exists i : |\lambda_i| > 1$
As before, eigenvalues not enough to determine stability

Case $\forall i \left| \lambda_i \right| \leq 1$ may be either stable, or unstable depending on repetition pattern of eigenvalues with $\left| \lambda_i \right| = 1$ (determined by eigenvectors)

The analogy to continuous time systems is not always perfect however!
Deadbeat response

• Assume all eigenvalues of A are zero:
 \[\lambda_1 = \lambda_2 = \ldots = \lambda_n = 0 \]

• Then $A^N = 0$ for some $N \leq n$ (nilpotent matrix)

• Example:
 \[A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \Rightarrow A^3 = 0 \]

 \[A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \Rightarrow A^2 = 0 \]

 \[A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \Rightarrow A^N = 0 \]

• Then $x_k = A^k x_0 = 0$ for all $k \geq N$

• ZIT gets to 0 in finite time and stays there.

• This never happens with continuous time systems.
Coordinate change

- Assume $\hat{x}_k = Tx_k$ for some invertible $T \in \mathbb{R}^{n \times n}$
- In the new coordinates system dynamics are again linear time invariant

$$
\hat{x}_{k+1} = \hat{A}\hat{x}_k + \hat{B}u_k \\
y_k = \hat{C}\hat{x}_k + \hat{D}u_k
$$

Exercise: Show this

with

$$
\hat{A} = TAT^{-1}, \quad \hat{B} = TB \\
\hat{C} = CT^{-1}, \quad \hat{D} = D
$$
Energy and Power

• Consider “energy like” function:
 \[V(x) = \frac{1}{2} x^T Q x \quad Q = Q^T > 0 \]

• “Power”: change of energy in time
 \[
 V(x_{k+1}) = \frac{1}{2} x_{k+1}^T Q x_{k+1} \\
 = \frac{1}{2} x_k^T (A^T QA) x_k + \frac{1}{2} u_k^T B^T Q Bu_k + \\
 + \frac{1}{2} u_k^T B^T Q A x_k + \frac{1}{2} x_k^T A^T Q B u_k
 \]

• If \(u_k = 0 \) (autonomous system)
 \[
 V(x_{k+1}) - V(x_k) = \frac{1}{2} x_k^T (A^T QA - Q) x_k = -\frac{1}{2} x_k^T Rx_k
 \]
 \[
 R = -(A^T QA - Q)
 \]
Stability and Energy

• If $R = R^T > 0$ then energy decreases all the time

• Natural to assume that system is stable

Theorem 6.3: $|\lambda_i| < 1$ for all $i=1, 2, \ldots, n$ if and only if for all $R = R^T > 0$ the equation $(A^TQ - Q) = -R$ has a unique solution with $Q = Q^T > 0$.

Exercise: Show that $R = R^T$
Controllability

- System is **controllable** if we can steer it from any initial condition $\hat{x}_0 \in \mathbb{R}^n$ to any final condition $\hat{x}_N \in \mathbb{R}^n$ using appropriate sequence $u_k, k = 0, 1, \ldots, N - 1$
- Assume $N \geq n$
- Define again controllability matrix

\[
P = [B \quad AB \quad A^2B \cdots A^{n-1}B] \in \mathbb{R}^{n\times nm}
\]

Theorem 6.4: The system is controllable if and only if P has rank n.

Exercise: Prove this
Observability

• System is **observable** if we can infer the state evolution $x_k, k = 0, 1, \ldots, N$ by observing the input and output sequences $u_k, y_k, k = 0, 1, \ldots, N$

• Assume $N \geq n - 1$

• Define again observability matrix

$$Q = \begin{bmatrix}
C \\
CA \\
\vdots \\
CA^{n-1}
\end{bmatrix} \in \mathbb{R}^{np \times n}$$

Theorem 6.5: The system is observable if and only if Q has rank n.

Exercise: Prove this
z Transform

- Time function f_k converts to a complex variable function $F(z)$

 $f : \mathbb{N} \rightarrow \mathbb{R}$ \quad $F : \mathbb{C} \rightarrow \mathbb{C}$

 \[
 f_k \xrightarrow{Z} F(z) \quad F(z) = Z\{f_k\} = \sum_{k=0}^{\infty} f_k z^{-k}
 \]

- We implicitly assume that $f_k = 0$ for all $k < 0$ (cf. p.0.22)

- Can also be defined for matrix valued functions by taking sum element by element

- $z \in \mathbb{C}$ can be thought of as unit time delay
z Transform: Properties

Assumption: The function f_k is such that the sum converges

- **Linearity** $\mathcal{Z}\left\{a_1 f_k + a_2 g_k\right\} = a_1 F(z) + a_2 G(z)$
- **Time shift** $\mathcal{Z}\left\{f_{k-k_0}\right\} = z^{-k_0} F(z)$
- **Convolution** $\mathcal{Z}\left\{(f * g)_k\right\} = \mathcal{Z}\left\{\sum_{i=0}^{k} f_i g_{k-i}\right\} = F(z)G(z)$

Exercise: Prove these

- **Some common functions:**
 - Impulse function $\mathcal{Z}\left\{\delta_k\right\} = 1 \quad (\delta_0 = 1, \delta_k = 0 \text{ if } k \neq 0)$
 - Step function $\mathcal{Z}\left\{1_k\right\} = \frac{z}{z-1} \quad (1_k = 1 \text{ if } k \geq 0, 1_k = 0 \text{ if } k < 0)$
 - Geometric progression $\mathcal{Z}\left\{a^k\right\} = \frac{z}{z-a} \quad (|a| < 1)$
Transfer function

- Assume $x_0 = 0$
- Take z transform of all signals

\[
x_{k+1} = Ax_k + Bu_k \Rightarrow zX(z) = AX(z) + BU(z)
\]

\[
y_k = Cx_k + Du_k \Rightarrow Y(z) = CX(z) + DU(z)
\]

\[
Y(z) = \left[C \left(zI - A \right)^{-1} B + D \right] U(z)
\]

Exercise: Show that the transfer function is z-transform of “impulse response” (appropriately defined!)
Transfer function

\[G(z) = C(zI - A)^{-1} B + D \]

- Rational function of \(z \).
- System asymptotically stable \(\Leftrightarrow \) Poles of \(G(z) \) have magnitude less than 1

- If system uncontrollable/unobservable pole zero cancellations.
Simulation

- Simulation: Numerical solution in computer
- Simulation of discrete time systems (linear or non-linear) is very easy conceptually
- Discrete time systems can also help understand the simulation of continuous time systems
- Consider continuous time, LTI system

\[\dot{x}(t) = Ax(t) + Bu(t) \]

- Given \(\hat{x}_0 \in \mathbb{R}^n, u(\cdot) : [0,T] \rightarrow \mathbb{R}^m \) solution is \(x(\cdot) : [0,T] \rightarrow \mathbb{R}^n \), with

\[x(t) = e^{At}(t)\hat{x}_0 + \int_0^t e^{A(t-\tau)}Bu(\tau) \, d\tau \]
Example: RLC circuit (p. 3.18)

\[\frac{d}{dt} \begin{bmatrix} v_c(t) \\ i_L(t) \end{bmatrix} = \begin{bmatrix} 0 & \frac{1}{C} \\ -\frac{1}{L} & -\frac{R}{L} \end{bmatrix} \begin{bmatrix} v_c(t) \\ i_L(t) \end{bmatrix} + \begin{bmatrix} 0 \\ \frac{1}{L} \end{bmatrix} v_s(t) \]

- Solution depends on eigenvalues and eigenvectors
- Determined by \(R, L, C \)
- Consider autonomous case \(v_s(t) = 0 \) for all \(t \)
For example

\[R = 3 \, W, \, L = 1 \, H, \, C = 0.5 \, F \]
\[\lambda_2 = -2 < -1 = \lambda_1 < 0 \]

\[R = 3 \, W, \, L = 1 \, H, \, C = 0.005 \, F \]
\[\lambda_i = -1.5 \pm 14.06 \, j \]
For example

\[R = 0 \Omega, \; L = 1 \text{H}, \; C = 0.005 \text{F} \]

\[\lambda_i = \pm 14.14 j \]
Numerical approximation

• Approximate the solution with a sequence \(\{x_k\}_{k=0}^{N} \)
• Divide the interval \([0, T]\) in \(N\) equal subintervals
• Let \(\delta = \frac{T}{N} \)
• We approximate

\[
x((k+1)\delta) \approx x(k\delta) + \delta \dot{x}(k\delta) = x(k\delta) + \delta(Ax(k\delta) + Bu(k\delta))
\]

• So we set \(x_0 = x(0) = \hat{x}_0, x_k = x(k\delta), u_k = u(k\delta) \)

\[
x_{k+1} = (I + A\delta)x_k + \delta Bu_k
\]
Numerical approximation

Integration using Euler method

First order approximation of the equation

\[x(t) = \Phi(t)x_0 + \int_0^t \Phi(t - \tau)Bu(\tau)d\tau \]
Zero input response

- Consider autonomous system
- Solution is $x(t) = \Phi(t)x_0 = e^{At}x_0$

\[
x((k + 1)\delta) = e^{A((k+1)\delta-k\delta)}x(k\delta) = e^{A\delta}x(k\delta)
= \left(I + A\delta + \frac{A^2\delta^2}{2} + \ldots\right)x(k\delta)
\]

- First order approximation

\[
x((k + 1)\delta) \approx (I + A\delta)x_k
\]

- First order approximation good if δ “small”
Stability of numerical approximation

- How small should the step be?
- If the eigenvalues of A have negative real part, then the system asymptotically stable and $x(t) \to 0$
- At the very least we would like to guarantee that the numerical approximation is such that $x_k \to 0$
- Assume A diagonalizable

\[A = W \Lambda W^{-1} \]

- Eigenvalue matrix (diagonal)
- Eigenvector matrix (invertible)
Stability of numerical approximation

- Then \(x_k = W (I + \lambda \delta)^k W^{-1} x_0 \)

\[
x_k = W \begin{bmatrix} (1 + \delta \lambda_1)^k & 0 & \ldots & 0 \\ 0 & (1 + \delta \lambda_2)^k & \ldots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \ldots & (1 + \delta \lambda_n)^k \end{bmatrix} W^{-1} x_0
\]

- Discrete time system asymptotically stable if and only if \(x_k \to 0 \ \forall x_0 \in \mathbb{R}^n \iff 1 + \lambda_i \delta < 1 \ \forall i = 1, \ldots, n \)

- For example, if \(\lambda_i \) are real and negative

\[
\delta < \frac{2}{\max_{i=1, \ldots, n} |\lambda_i|}
\]

Exercise: Prove this

Exercise: Repeat for complex eigenvalues
RLC circuit with $R=3\,\Omega$, $L=1\,H$, $C=0.5\,F$

$\delta = 0.01$

$\delta = 0.05$
RLC circuit with $R=3\,\Omega$, $L=1\,H$, $C=0.5\,F$

«Exact» solution

Numerical approximation

Instability!

$\delta = 0.25$

$\lambda_1 = -1$, $\lambda_2 = -2 \Rightarrow \delta < 1$ for stability
Simulation

- Simple first order approximation known as “forward Euler” method
- Another approach is “backward Euler”

\[\dot{x} = Ax \Rightarrow x_{k+1} \approx x_k + \delta A x_{k+1} \Rightarrow x_{k+1} \approx (I - \delta A)^{-1} x_k \]

- Care also needed when selecting step \(\delta \)
- Much better methods than Euler exist
 - E.g. Runge-Kutta, variable step, high order
 - Specialized methods for “stiff” systems, hybrid systems, differential-algebraic systems, etc.
 - Coded in robust numerical tools such as Matlab
Signal- und Systemtheorie II
D-ITET, Semester 4

Notes 7: Nonlinear systems

John Lygeros

Automatic Control Laboratory, ETH Zürich
WWW.CONTROL.ETHZ.CH
Nonlinear systems

• Most of this course: Dynamical systems modeled by linear differential equations in state space form

\[\dot{x}(t) = Ax(t) + Bu(t) \quad x(t) \in \mathbb{R}^n, u(t) \in \mathbb{R}^m, y(t) \in \mathbb{R}^p \]

\[y(t) = Cx(t) + Du(t) \quad A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m}, C \in \mathbb{R}^{p \times n}, D \in \mathbb{R}^{p \times m} \]

• Last few lectures return to more general systems

\[\dot{x}(t) = f(x(t), u(t)) \quad x(t) \in \mathbb{R}^n, u(t) \in \mathbb{R}^m, y(t) \in \mathbb{R}^p \]

\[y(t) = h(x(t), u(t)) \quad f : \mathbb{R}^n \times \mathbb{R}^m \rightarrow \mathbb{R}^n, h : \mathbb{R}^n \times \mathbb{R}^m \rightarrow \mathbb{R}^p \]

• Concentrate on continuous time

• Discrete time can be more complicated
 – E.g. the “Population Dynamics” example in Notes 1 is one dimensional but can be chaotic
Nonlinear systems

- More general than linear system, hence more difficult
- Concentrate on autonomous, time invariant systems

\[\dot{x}(t) = f(x(t)) \quad \left(\text{In the linear case } \dot{x}(t) = Ax(t) \right) \]

- Assume function \(f \) is Lipschitz

\[\exists \lambda > 0, \forall x, \hat{x} \in \mathbb{R}^n, \quad \| f(x) - f(\hat{x}) \| \leq \lambda \| x - \hat{x} \| \]

- This implies existence and uniqueness of solutions
- In general solution cannot be computed analytically
- Simulation methods applicable however
- Look into the following issues
 - Invariant sets
 - Stability of invariant sets
Invariant sets

• Generalization of notion of equilibrium

Definition: A set of states \(S \subseteq \mathbb{R}^n \) is called **invariant** if

\[
\forall x_0 \in S, \forall t \geq 0, \quad x(t) \in S
\]

\(x(t) \) means the solution to \(\dot{x}(t) = f(x(t)) \) starting at \(x_0 \)

• Equilibrium points are an important class of invariant sets

Definition: A state \(\hat{x} \in \mathbb{R}^n \) is called an **equilibrium** if

\[
f(\hat{x}) = 0
\]

Exercise: Prove that if \(\hat{x} \) is an equilibrium then \(S = \{ \hat{x} \} \) is an invariant set
Equilibria

- Linear systems have a linear subspace of equilibria
 - Sometimes only $\hat{x} = 0$
 - More generally, the null space of the matrix A

Exercise: Show that the equilibria of $\dot{x}(t) = Ax(t)$ coincide with the null space of A

- Nonlinear systems can have many isolated equilibria
- Example: The pendulum from Notes 1 has 2 equilibria

\[\dot{x}(t) = \begin{bmatrix} x_2(t) \\ -\frac{d}{m} x_2(t) - \frac{g}{l} \sin x_1(t) \end{bmatrix} \Rightarrow \hat{x} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \hat{x}' = \begin{bmatrix} \pi \\ 0 \end{bmatrix} \]

(More precisely, number of pendulum equilibria is infinite, but they all coincide physically with these two)
Exercise: Let $x_{k+1} = f(x_k)$ be a nonlinear system in discrete time (cf. p.1.27). The equilibria for this system are given by

$$\hat{x} = f(\hat{x})$$

Show that equilibria are invariant sets (cf. p.1.29).
Shifting equilibria to the origin

• It is often convenient to “shift” an equilibrium to the origin before analyzing the system behavior.

• This involves a change of coordinates

\[w(t) = x(t) - \hat{x} \in \mathbb{R}^n \]

• In the new coordinates the system becomes

\[\dot{w}(t) = \dot{x}(t) = f(x(t)) = f(w(t) + \hat{x}) = \hat{f}(w(t)) \]

• The system in the new coordinates has an equilibrium at \(\hat{w} = 0 \in \mathbb{R}^n \)

Exercise: Show this
Limit cycles

- Observed only in systems of dimension 2 or more

Definition: A solution $x(t)$ is called a **periodic orbit** if

$$\exists T > 0, \forall t \geq 0, \quad x(t + T) = x(t)$$

- Equilibria define trivial periodic orbits
- Limit cycles: Non-trivial periodic orbits
- Linear systems exhibit either
 - Trivial periodic orbits (equilibria)
 - Subspaces of periodic orbits, e.g.

$$\dot{x}(t) = \begin{bmatrix} 0 & \omega \\ -\omega & 0 \end{bmatrix} x(t)$$

- Nonlinear systems can also have non-trivial, isolated periodic orbits \Rightarrow **Limit cycles**

Exercise: Show that solution starting at an equilibrium is periodic

Exercise: Show this system has subspace of periodic orbits
Example: Van der Pol oscillator

- Developed as a model for dynamics of vacuum tube (transistor) circuits
- Under certain conditions circuits observed to oscillate
- Van der Pol showed this is due to “nonlinear resistance” phenomena
- Second order differential equation

\[\ddot{\theta}(t) - \varepsilon (1 - \theta(t)^2) \dot{\theta}(t) + \theta(t) = 0 \]

Exercise: Write the equation for the van der Pol oscillator in state space form. Hence determine its equilibria.
Example: van der Pol oscillator, $\varepsilon=1$

Exercise: Let $x_{k+1} = f(x_k)$ be a nonlinear system in discrete time. How would you define periodic orbits and limit cycles for this system? (cf. p.1.28).

Stable limit cycle

Unstable equilibrium
Strange attractors

- In 2D continuous time equilibria & limit cycles as bad as it gets (Poincare-Bendixson Theorem)
- In higher dimensions stranger things may happen
 - Invariant tori
 - Chaotic attractors
- Example: Lorenz equations
 - Developed by E.N. Lorenz
 - To capture atmospheric phenomena

\[
\begin{align*}
\dot{x}_1(t) &= a(x_2(t) - x_1(t)) \\
\dot{x}_2(t) &= (1 + b)x_1(t) - x_2(t) - x_1(t)x_3(t) \\
\dot{x}_3(t) &= x_1(t)x_2(t) - cx_3(t)
\end{align*}
\]
Chaotic attractor

• For some parameter values, there is a bounded subset of the state space such that if we start inside we stay there for ever and
 – Most trajectories go around for ever,
 – Without ever meeting themselves (not limit cycles)
• Given any two points in this set we can find a trajectory that starts arbitrarily close to one and ends up arbitrarily close to the other
• This set is called a chaotic or strange attractor

Exercise: Compute the equilibria of the Lorenz equations

Exercise: Simulate the Lorenz equations for $a=10$, $b=24$, $c=2$, and $x_0=(-5, -6, 20)$
Lorenz attractor simulation
Stability

- Most commonly studied property of invariant sets
- Trajectories stay close or converge to invariant set
- Restrict attention to equilibria
- Simple characterization for LTI and equilibrium $\hat{x} = 0$
 - Systems stable if eigenvalues of A have negative real part
 - Poles of transfer function are in left half of complex plane

Definition: An equilibrium \hat{x} is called **stable** if for all $\varepsilon > 0$ there exists $\delta > 0$ such that
\[
\left\| x_0 - \hat{x} \right\| < \delta \implies \left\| x(t) - \hat{x} \right\| < \varepsilon \quad \forall t \geq 0
\]
Otherwise equilibrium called **unstable**.

Exercise: Which of the equilibria of the pendulum (simulation p. 7.6) would you say are stable and which not?
Asymptotic stability

- Stability says that if we start close we stay close
- Do we get closer and closer?

Definition: An equilibrium \(\hat{x} \) is called **locally asymptotically stable** if it is stable and there exists \(M > 0 \) such that

\[
\| x_0 - \hat{x} \| < M \Rightarrow \lim_{t \to \infty} x(t) = \hat{x}
\]

It is called **globally asymptotically stable** if this holds for any \(M > 0 \).

The set of \(x_0 \) such that \(\lim_{t \to \infty} x(t) = \hat{x} \) is called the **domain of attraction** of \(\hat{x} \).

Exercise: What is the domain of attraction of a globally asymptotically stable equilibrium?

Exercise: Is there a difference between local and global asymptotic stability for linear systems?
Example: Pendulum with $d > 0$

Exercise: Which of the equilibria would you say are locally asymptotically stable? Which globally?
Linearization

• Simple way to study stability of equilibrium of nonlinear system is to approximate by linear system

\[\dot{x}(t) = f(x(t)), \quad f(\hat{x}) = 0 \]

• Take Taylor expansion about \(\hat{x} \)

\[f(x) = f(\hat{x}) + A(x - \hat{x}) + \text{higher order terms in } (x - \hat{x}) \]

\[= A(x - \hat{x}) + \text{higher order terms in } (x - \hat{x}) \]

\[
x = \begin{bmatrix}
x_1 \\
\vdots \\
x_n
\end{bmatrix},
\quad f(x) = \begin{bmatrix}
f_1(x_1, \ldots, x_n) \\
\vdots \\
f_n(x_1, \ldots, x_n)
\end{bmatrix},
\quad A = \begin{bmatrix}
\frac{\partial f_1}{\partial x_1}(\hat{x}) & \cdots & \frac{\partial f_1}{\partial x_n}(\hat{x}) \\
\vdots & \ddots & \vdots \\
\frac{\partial f_n}{\partial x_1}(\hat{x}) & \cdots & \frac{\partial f_n}{\partial x_n}(\hat{x})
\end{bmatrix} \in \mathbb{R}^{n \times n}
\]
Linearization

- Consider distance of x to equilibrium $\delta x(t) = x(t) - \hat{x} \in \mathbb{R}^n$
- When x close to equilibrium, δx is small and

$$\frac{d\delta x(t)}{dt} \approx A\delta x(t)$$

- So close to equilibrium nonlinear system expected to behave like a linear system
- In particular, stability of the linearization should tell us something about stability of nonlinear system
- Stability of linearization can be determined just by looking at the eigenvalues of A
Stability by linearization

Theorem 7.1: The equilibrium \(\hat{x} \) is
1. Locally asymptotically stable if the eigenvalues of the linearization have negative real part
2. Unstable if the linearization has at least one eigenvalue with positive real part

- Called **Lyapunov first** or **Lyapunov indirect method**
- Advantage: Very easy to use
- Disadvantages:
 - No information about the domain of attraction
 - Inconclusive if linearization has imaginary/zero eigenvalues
Pendulum example, $d>0$

- Linearization about $\hat{x} = (0,0)$

$$\frac{d\delta x(t)}{dt} = \begin{bmatrix} 0 & 1 \\ -\frac{g}{l} & -\frac{d}{m} \end{bmatrix} \delta x(t) \Rightarrow \lambda^2 + \frac{d}{m} \lambda - \frac{g}{l} = 0$$

- Eigenvalues have negative real part, hence equilibrium locally asymptotically stable

- Linearization about $\hat{x} = (\pi,0)$

$$\frac{d\delta x(t)}{dt} = \begin{bmatrix} 0 & 1 \\ \frac{g}{l} & -\frac{d}{m} \end{bmatrix} \delta x(t) \Rightarrow \lambda^2 + \frac{d}{m} \lambda - \frac{g}{l} = 0$$

- At least one eigenvalue has positive real part, hence equilibrium unstable
Linearization can be inconclusive

- Notice that if $d=0$
 - Linearization about $\hat{x}=(\pi,0)$ has positive eigenvalue
 - Hence $\hat{x}=(\pi,0)$ is unstable for nonlinear system
 - Linearization about $\hat{x}=(0,0)$ has imaginary eigenvalues
 - Stability of $\hat{x}=(0,0)$ not determined from Theorem 7.1

- It turns out that equilibrium is stable (see fig. on p.7.6)
- This is not always the case
- For example, the linearization of both

$$\dot{x}(t) = x(t)^3 \quad \text{and} \quad \dot{x}(t) = -x(t)^3$$

about $\hat{x} = 0$ has one eigenvalue at zero
- But 0 stable for one system and unstable for the other
Lyapunov functions

• In linear systems stability characterized in two ways
 – Eigenvalues of matrix A (Theorems 3.1, 3.2), or poles of the transfer function (p.5.19)
 – Existence of decreasing energy-like function (Theorem 4.1)
• First applies to nonlinear systems, how about second?
• Properties of energy-like function for linear systems
 1. Quadratic function of the state $V(x) = \frac{1}{2} x^T Q x$
 2. Q positive definite $\Rightarrow V(x)>0$ for all $x \neq 0$, $V(0) = 0$
 3. Power also quadratic of the state $\frac{d}{dt} V(x) = -\frac{1}{2} x^T R x$
 4. $R = -(A^T Q + QA)$ positive definite $\Rightarrow V(x)$ decreases for all $x \neq 0$
• For nonlinear systems keep 2 and 4, but allow more general (non-quadratic) $V(x)$
Lyapunov functions: Stability

Theorem 7.2: Assume there exists an open set $S \subset \mathbb{R}^n$ with $\hat{x} \in S$ and a differentiable function $V(\cdot): \mathbb{R}^n \rightarrow \mathbb{R}$

1. $V(\hat{x}) = 0$
2. $V(x) > 0$, $\forall x \in S$ with $x \neq \hat{x}$
3. $\frac{d}{dt} V(x(t)) \leq 0$, $\forall x \in S$

Then the equilibrium \hat{x} is stable

- Called **Lyapunov second** or **Lyapunov direct method**
- Function $V(x)$ known as **Lyapunov function**
- Derivative along trajectories known as **Lie derivative**

$$\frac{d}{dt} V(x(t)) = \sum_{i=1}^{n} \frac{\partial V}{\partial x_i}(x(t)) \frac{d}{dt} x_i(t) = \sum_{i=1}^{n} \frac{\partial V}{\partial x_i}(x(t)) f_i(x(t)) = \nabla V(x(t)) f(x(t))$$
"Proof": By picture!

$$S_c = \left\{ x \in S \mid V(x) \leq c \right\}$$
Example: Pendulum for $d=0$

- Recall that linearization could not determine the stability of $\hat{x} = (0, 0)$ when $d=0$
- Consider the energy

\[
V(x) = \frac{1}{2} m (l \dot{\theta})^2 + mgl(1 - \cos(\theta))
\]

\[
= \frac{1}{2} ml^2 x_2^2 + mgl(1 - \cos(x_1))
\]
Example: Pendulum for $d=0$

Take $S = (-\pi, \pi) \times \mathbb{R}$ check theorem conditions

1. $V(0) = 0$
2. $V(x) > 0 \quad \forall x \neq 0$
3. $\frac{d}{dt}V(x(t)) = ml^2 x_2(t) \dot{x}_2(t) + mgl \sin(x_1(t))\dot{x}_1(t) = 0$

Hence the equilibrium is stable
Lyapunov functions: Asymptotic stability

Theorem 7.3: Assume there exists an open set \(S \subseteq \mathbb{R}^n \) with \(\hat{x} \in S \) and a differentiable function \(V(\bullet): \mathbb{R}^n \rightarrow \mathbb{R} \)

1. \(V(\hat{x}) = 0 \)
2. \(V(x) > 0, \forall x \in S \) with \(x \neq \hat{x} \)
3. \(\frac{d}{dt} V(x(t)) < 0, \forall x \in S \) with \(x \neq \hat{x} \)

Then the equilibrium \(\hat{x} \) is locally asymptotically stable. If \(S = \mathbb{R}^n \) then it is globally asymptotically stable.

- Lyapunov functions can help estimate domain of attraction. If we can find \(c > 0 \) such that
 \[
 \left\{ x \in \mathbb{R}^n \mid V(x) \leq c \right\} \subseteq S
 \]
 then trajectories that start in this set stay in it and converge to \(\hat{x} \)
Examples

• Consider first
 \[\dot{x}(t) = f(x(t)) = -x(t)^3 \quad \text{where } \dot{x} = 0 \]

• Let \(S = \mathbb{R}, \quad V(x) = x^2 \)

• Clearly \(V(0) = 0, V(x) > 0 \ \forall x \neq 0, \frac{\partial}{\partial x} V(x)f(x) = -2x^4 < 0 \ \forall x \neq 0 \)

• Therefore 0 is globally asymptotically stable

• How about pendulum with \(d > 0 \)

• As before consider \(S = (-\pi, \pi) \times \mathbb{R} \) and \(V(x) \) the energy

 \[
 \frac{d}{dt} V(x(t)) = ml^2 \dot{x}_2(t) \ddot{x}_2(t) + mgl \sin(x_1(t)) \dot{x}_1(t) = -dl^2 x_2(t)^2 \leq 0
 \]

• But =0 whenever \(x_2(t) = 0 \) (not only at \(\dot{x} = (0,0) \)), therefore cannot conclude local asymptotic stability
La Salle’s Theorem

Theorem 7.4: Assume there exists a compact invariant set $S \subseteq \mathbb{R}^n$ and a differentiable function $V(\cdot): \mathbb{R}^n \to \mathbb{R}$ such that

$$\nabla V(x)f(x) \leq 0 \quad \forall x \in S$$

Let M be the largest invariant set contained in the set

$$\bar{S} = \left\{ x \in S \mid \nabla V(x)f(x) = 0 \right\} \subseteq \mathbb{R}^n$$

Then all trajectories starting in S tend to M as $t \to \infty$.

- “Compact” means bounded and closed
- If \hat{x} only invariant set in

$$\left\{ x \in S \mid \nabla V(x)f(x) = 0 \right\}$$

then all trajectories starting in S tend to it.
Pendulum with $d > 0$

- Take $V(x)$ the energy and $S = \left\{ x \in \mathbb{R}^2 \mid V(x) \leq 2mgl - \varepsilon \right\}$ for any $\varepsilon > 0$

Exercise: Show that S is invariant

- Recall that

$$\nabla V(x) f(x) = -dl^2x_2^2 \begin{cases}
\leq 0 & \forall x \in S \\
= 0 & \text{when } x_2 = 0
\end{cases}$$

Energy when pendulum stopped upside down
Pendulum with $d > 0$

- Therefore
 \[\bar{S} = \{ x \in S | x_2 = 0 \}\]
- $\hat{x} = (0,0)$ is the only invariant set contained in \bar{S}, since $\dot{x}_2 \neq 0$ if $x_2 = 0$ but $x_1 \neq 0$
- Therefore all trajectories that start in S tend to $\hat{x} = (0,0)$
- By Theorem 7.2, $\hat{x} = (0,0)$ is stable
- Hence, by Theorem 7.4, locally asymptotically stable
- Moreover, since ϵ is arbitrary, the domain of attraction of $(0,0)$ contains everything except the other equilibrium $(\pi,0)$
General comments

- Theorem 7.4 applies to more general invariant sets (e.g. limit cycles)
- Theorems 7.2 and 7.3 also generalize easily
- Theorem 7.1 slightly harder to generalize (linearization about trajectories, Poincare maps)
- Conditions of Theorems 7.2-7.4 sufficient and not necessary
- Finding Lyapunov functions for nonlinear systems an art not a science. Common choices
 - Energy for mechanical and electrical systems
 - Quadratics (always work for linear systems)
 - Intuition!