Time-domain subspace identification

State-space plant model

\[x(k + 1) = Ax(k) + Bu(k) + w(k) \]
\[y(k) = Cx(k) + Du(k) + v(k), \]

with dimensions, \(x(k) \in \mathcal{R}^n \), \(u(k) \in \mathcal{R}^{nu} \) and \(y(k) \in \mathcal{R}^ny \).

We are considering both “process noise”, \(w(k) \), and output noise, \(v(k) \).
Time-domain subspace identification

Approach

- Form a matrix (from the data) such that its range is spanned by the extended observability matrix, O.
- Use an SVD to estimate the plant order and give the vectors spanning O.
- Estimate \hat{C} and \hat{A}, via least-squares, from the representation of O.
- Estimate \hat{B} and \hat{D} by a least-squares fit to the data.

This is very similar in concept to the frequency domain approach.

Data matrix construction

Consider the output as a function of past inputs and a past state;

\[y(k + r) = Cx(k + r) + Du(k + r) + v(k + r) \]

\[= CAx(k + r - 1) + CBu(k + r - 1) + Cw(k + r - 1) + Du(k + r) + v(k + r) \]

\[\vdots \]

\[= CA^r x(k) + \]

\[CA^{r-1} Bu(k) + CA^{r-2} Bu(k + 1) \cdots CBu(k + r - 1) + Du(k + r) \]

\[+ CA^{r-1} w(k) + CA^{r-2} w(k + 1) \cdots Cw(k + r - 1) \]

\[+ v(k + r). \]

The output $y(k + r)$ depends upon:

- $x(k)$,
- $u(k), u(k + 1), \ldots, u(k + r)$,
- $w(k), w(k + 1), \ldots, w(k + r - 1)$,
- $v(k + r)$.
Data matrix construction

Repeat this expansion for \(y(k), y(k + 1), \ldots, y(k + r - 1) \).

Define:

\[
Y_r(k) = \begin{bmatrix}
y(k) \\
y(k + 1) \\
\vdots \\
y(k + r - 1)
\end{bmatrix}, \quad \text{and} \quad U_r(k) = \begin{bmatrix}
u(k) \\
u(k + 1) \\
\vdots \\
u(k + r - 1)
\end{bmatrix},
\]

Then,

\[
Y_r(k) = \begin{bmatrix}
C \\
CA \\
\vdots \\
CA^{r-1}
\end{bmatrix} x(k) + \begin{bmatrix}
D \\
CB \\
\vdots \\
CA^{r-2}B
\end{bmatrix} U_r(k) + N_r(k)
\]

\[
= O_r x(k) + S_r U_r(k) + N_r(k)
\]

Noise contribution

\[
N_r(k) = \begin{bmatrix}
0 & 0 \\
C & 0 \\
\vdots \\
CA^{r-2} & \ldots & CA & 0
\end{bmatrix} W_r(k) + V_r(k),
\]

where,

\[
W_r(k) = \begin{bmatrix}
w(k) \\
w(k + 1) \\
\vdots \\
w(k + r - 1)
\end{bmatrix}, \quad \text{and} \quad V_r(k) = \begin{bmatrix}
v(k) \\
v(k + 1) \\
\vdots \\
v(k + r - 1)
\end{bmatrix}.
\]
Matrix formulation

Create a matrix by stacking these equations side-by-side with each incremented in time by one.

Define:

\[
Y = \begin{bmatrix} Y_r(1) & Y_r(2) & \ldots & Y_r(N) \end{bmatrix},
\]
\[
X = \begin{bmatrix} x(1) & x(2) & \ldots & x(N) \end{bmatrix},
\]
\[
U = \begin{bmatrix} U_r(1) & U_r(2) & \ldots & U_r(N) \end{bmatrix},
\]
\[
W = \begin{bmatrix} W_r(1) & W_r(2) & \ldots & W_r(N) \end{bmatrix},
\]
\[
V = \begin{bmatrix} V_r(1) & V_r(2) & \ldots & V_r(N) \end{bmatrix},
\]

So,

\[
Y = \begin{bmatrix}
 y(k) & y(k+1) & \ldots & y(k+N-1) \\
 y(k+1) & y(k+2) & \ldots & y(k+N) \\
 \vdots & \vdots & \ddots & \vdots \\
 y(k+r-1) & y(k+r) & \ldots & y(k+r+N-2)
\end{bmatrix}.
\]

Block Toeplitz \(Y \in \mathbb{R}^{r n_u \times N} \)

Matrix formulation

Then,

\[
Y = O_r X + S_r U + Q_r W + V.
\]

To remove the effect of \(U \) we choose the dimensions such that \(r n_u < N \) and \(U \) has a non-trivial null-space.

\[
\Pi_{UT}^\perp = I - U^T (UU^T)^{-1} U,
\]

is the projection onto the space perpendicular to \(U^T \).

\[
U \Pi_{UT}^\perp = U - UU^T (UU^T)^{-1} U = U - U = 0.
\]

Multiplying on the right gives,

\[
Y \Pi_{UT}^\perp = O_r X \Pi_{UT}^\perp + (Q_r W + V) \Pi_{UT}^\perp
\]

\[
= O_r X \Pi_{UT}^\perp + Z \Pi_{UT}^\perp
\]
“Correctness”

In the noise free case the algorithm will recover the true plant.

\[Y\Pi_{UT}^\perp = O_r X\Pi_{UT}^\perp + Z\Pi_{UT}^\perp \]

noise term

Noise-free case

If \(w(k) = 0 \) and \(v(k) = 0 \) then,

\[Y\Pi_{UT}^\perp = O_r X\Pi_{UT}^\perp \]

and so the range space of \(Y\Pi_{UT}^\perp \) is the extended observability space.

As in the frequency domain subspace ID case we can factorize this into the true \(C \) and \(A \) matrices exactly (up to a similarity transform).

Correlation methods for noise removal

\[Y\Pi_{UT}^\perp = O_r X\Pi_{UT}^\perp + Z\Pi_{UT}^\perp \]

noise term

Correlate the noise term with variables that make it converge to zero.

Define:

\[\Phi \in \mathcal{R}^{s \times N} \quad (s \geq N), \quad (\Phi \text{ will be chosen later}) \]

\[\Phi = [\phi_s(1) \quad \phi_s(2) \quad \ldots \quad \phi_s(N)] \]

Multiply on the right by \(\Phi^T \) and normalize w.r.t. \(N \).

\[
\frac{1}{N} Y\Pi_{UT}^\perp \Phi^T = O_r \frac{1}{N} X\Pi_{UT}^\perp \Phi^T + \frac{1}{N} Z\Pi_{UT}^\perp \Phi^T \\
= O_r \bar{T}_N + \mathcal{V}_N.
\]
Correlation methods for noise removal

\[\frac{1}{N} Y \Pi^\perp_{UT} \Phi^T = O_r \tilde{T}_N + V_N. \]

We want to select \(\phi_s(k) \) such that,

\[\lim_{N \to \infty} V_N = \lim_{N \to \infty} \frac{1}{N} Z \Pi^\perp_{UT} \Phi^T = 0, \]

and

\[\lim_{N \to \infty} \tilde{T}_N = \lim_{N \to \infty} \frac{1}{N} X \Pi^\perp_{UT} \Phi^T = \tilde{T} \]

has rank \(n \).

This ensures that the noise term, \(V_N \), goes to zero

and that the range space is \(O_r \).

\[\lim_{N \to \infty} \frac{1}{N} Y \Pi^\perp_{UT} \Phi^T = O_r \tilde{T}. \]

This approach is analogous to the instrumental variable methods for prediction error problems.

Selecting \(\Phi \)

\[\frac{1}{N} Z \Pi^\perp_{UT} \Phi^T = \frac{1}{N} \sum_{k=1}^{N} Z(k)\phi_s(k)^T - \]

\[\frac{1}{N} \sum_{k=1}^{N} Z(k)U_r(k)^T \left(\frac{1}{N} \sum_{k=1}^{N} U_r(k)^T U_r(k) \right)^{-1} \frac{1}{N} \sum_{k=1}^{N} U_r(k)\phi_s(k)^T, \]

where \(Z(k) = Q_r W(k) + V(k) \).

Under mild conditions this converges to the expected values:

\[\lim_{N \to \infty} \frac{1}{N} Z \Pi^\perp_{UT} \Phi^T = \]

\[E\{Z(k)\phi_s(k)^T\} - E\{Z(k)U_r(k)^T\} R_u^{-1} E\{U_r(k)\phi_s(k)^T\}. \]

Note that \(R_u = E\{U_r(k)U_r(k)^T\} \) is invertible for persistently exciting inputs.
Selecting Φ

\[
\lim_{N \to \infty} \frac{1}{N} Z \Pi_{U_T} \Phi^T =
E\{Z(k)\phi_s(k)^T\} - \underbrace{E\{Z(k)U_r(k)^T\}}_{\text{zero if } v(k), \ w(k) \text{ and } u(k) \text{ uncorrelated}} R_u^{-1} E\{U_r(k)\phi_s(k)^T\}.
\]

So to get both terms zero we also require that $Z(k)$ and $\phi(k)$ are also uncorrelated. Invertibility of R_u comes from persistency of excitation.

Typical choice — past inputs and outputs:

\[
\phi_s(k) = \begin{bmatrix}
 y(k - 1) \\
 \vdots \\
 y(k - s_1) \\
 u(k - 1) \\
 \vdots \\
 u(k - s_2)
\end{bmatrix}
\]

These are uncorrelated with the current noises, $w(k)$ and $v(k)$.

Selecting Φ

Similarly for the \tilde{T} term,

\[
\tilde{T} = \lim_{N \to \infty} \frac{1}{N} X \Pi_{U_T} \Phi^T =
E\{x(k)\phi_s(k)^T\} - E\{x(k)U_r(k)^T\} R_u^{-1} E\{U_r(k)\phi_s(k)^T\}.
\]

It is more difficult to show that this has rank n as required.

Observe that we need $\phi_s(k)$ to be correlated with both $x(k)$ and $u(k)$.

This supports the choice of previous inputs and outputs.
Algorithm:

1. Select matrix dimensions, r, N, etc. and the correlation variables, $\phi_s(k)$.
2. Given $y(k)$ and $u(k)$ form,
 \[M = \frac{1}{N} Y \Pi_{U}^T \Phi^T. \]
3. Select invertible weighting matrices, W_1 and W_2 and calculate the SVD of the weighted matrix,
 \[\text{svd}(W_1 MW_2) = U \Sigma V^T. \]
4. Select a model order, \hat{n}, from the SVD.
 \[U \Sigma V^T \approx [U_1 \quad U_2] \begin{bmatrix} \Sigma_1 & 0 \\ 0 & \Sigma_2 \end{bmatrix} \begin{bmatrix} V_1^T \\ V_2^T \end{bmatrix} \]
 \[\Sigma_1 \in \mathcal{R}^{\hat{n} \times \hat{n}}. \]

In the noise-free case $\Sigma_2 = 0$. We hope that it is still small in the noisy case.

5. Note that,
 \[\text{span}(O_r) = \text{span}(W_1^{-1} U_1), \]
 but we can apply a weighting matrix, R, to give,
 \[\hat{O}_r = W_1^{-1} U_1 R. \]
 (R weights the LS fit that follows in step 7)

6. Form the estimate \hat{C} via,
 \[\hat{C} = \hat{O}_r (1 : n_u, 1 : \hat{n}). \]
 (the top rows of \hat{O}_r)

7. Form the estimate \hat{A} via LS fit to,
 \[\hat{O}_r (n_u + 1 : r n_u, 1 : \hat{n}) = \hat{O}_r (1 : (r - 1) n_u, 1 : \hat{n}) \hat{A}. \]
Algorithm:

8. Estimate \hat{B}, \hat{D} (and if necessary, \hat{x}_0) from the linear least-squares fit to the data:

$$\{\hat{B}, \hat{D}, \hat{x}_0\} = \arg\min_{B,D,x_0} \frac{1}{N} \sum_{k=1}^{N} \left\| y(k) - Du(k) - \left(\hat{C}(z^{-1} I - \hat{A})^{-1} \right) \left(x_0 \delta(k) + Bu(k) \right) \right\|^2_2$$

where, $\delta(k) = \begin{cases} 1 & \text{if } k = 0, \\ 0 & \text{otherwise} \end{cases}$

Algorithm design choices

Correlation vector: $\phi_s(k)$

We typically choose a combination of past inputs and past outputs. It must be uncorrelated with respect to the current noises, $w(k)$ and $v(k)$. It must be correlated with respect to the plant state and inputs.

Some algorithms use only past inputs in $\phi_s(k)$ which gives an “output-error” type of formulation. For example: OE-MOESP.

Prediction horizon: r

We clearly need $r > n$. We frequently also choose $r = s$.

Least-squares weighting: R

Typically, $R = I$, $R = \Sigma_s$ or $R = \Sigma_s^{1/2}$.
Algorithm design choices

Weighting matrices: W_1 and W_2

This choice affects the noise properties of the algorithms.

- **MOESP** (Verhaegen)

 \[W_1 = I, \quad W_2 = \left(\frac{1}{N} \Phi \Pi_{U^T} \Phi^T \right)^{-1} \Phi \Pi_{U^T}. \]

- **N4SID** (Van Overschee and DeMoor)

 \[W_1 = I, \quad W_2 = \left(\frac{1}{N} \Phi \Pi_{U^T} \Phi^T \right)^{-1} \Phi. \]

- **IVM** (Viberg)

 \[W_1 = \left(\frac{1}{N} Y \Pi_{U^T} Y^T \right)^{-1/2}, \quad W_2 = \left(\frac{1}{N} \Phi \Phi^T \right)^{-1/2}. \]

- **CVA** (Larimore)

 \[W_1 = \left(\frac{1}{N} Y \Pi_{U^T} Y^T \right)^{-1/2}, \quad W_2 = \left(\frac{1}{N} \Phi \Pi_{U^T} \Phi^T \right)^{-1/2}. \]

Bibliography

Subspace identification

